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Abstract 
The aim of this dissertation is to investigate the benefits of using wavelet based time- 

frequency analysis in filtering of non-stationary biomedical signals. 

Filtering of non-stationary signals is an important issue in biomedical applications for 
increasing the accuracy of signal detection. One of possible applications of filtering methods 
is transient evoked otoacoustic emission (TEOAE), which is used to separate hearing 
impaired and normal hearing subjects in large screening tests of hearing. It is very important 
to have high sensitivity and specificity of these tests. Linear bandpass filtering was shown 
useful for increasing the specificity without loss of sensitivity in detection of TEOAE. 
However, linear filtering gave very limited improvement, since the spectrum of these signals 
is changing in time and overlaps with the spectrum of the noise. 

In this dissertation, we have shown the use of wavelet transform for denoising of 
TEOAE signals using non-linear filtering and time- frequency filtering. Non- linear filtering, 
which is using the shrinkage of wavelet coefficients, was shown useful in applications, where 
spectrum of the signal and of the noise overlap. Very important issue is here to estimate the 
optimal shrinkage threshold. We developed the procedure to estimate this threshold. The 
threshold can be found by maximizing some criterion for optimality, e.g. cross correlation 
coefficient of the two subaverages of the TEOAE. The results of the non-linear filtering using 
proposed and thresholds found in the literature were compared. New threshold showed 
advantage over known thresholds. Another contribution of this dissertation is the method for 
time- frequency filtering of the signal using selection of the relevant signal expansion 
coefficients in discrete wavelet basis. The relevant coefficients can be determined by using a 
priori knowledge about the location of the signal components in time- frequency plane or by 
using statistical analysis, e.g. decomposing large amount of the signals and averaging them in 
time- frequency plane. Comparison of filtering results with proposed non-linear, time- 
frequency and known linear methods showed time-frequency filter being the best. 

The feature extraction method using discrete orthonormal wavelet transform was 
investigated. The extracted features were cross correlation coefficients among in frequency 
and in time limited TEOAE signal components. It was shown how these features could be 
obtained very efficiently using fast discrete wavelet transform. A neural network was 
suggested for combining the extracted features. Comparison of the subjects' separation results 
in large database of TEOAE signals using proposed and known in literature filtering methods 
and proposed feature extraction methods was made. Receiver operator characteristics were 
used for comparisons. The highest increase of specificity at the level of 90% of sensitivity 
was achieved by using neural network for combining the extracted TEOAE features: from 
68% to 84%. 
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1 Introduction 

Most of biomedical signals are non-stationary, very low in amplitude and 

usually are embedded in noise of various origins: environmental noises, 

noise of the recording hardware, subject generated noise and other. To 

remove these noises from the signal it is impossible to use classical filtering 

because in most of the cases spectra of the signal and of the noise overlap. 

Another problem is the detection of biomedical signals. This task we 

formulate as making the decision whether a recorded waveform consists of 

"noise alone" or "signal masked by noise". The detection of biomedical signals 

is more difficult than of radar as the shape of the signal is usually unknown. 

In addition, the recorded waveforms exhibit high variability among the 

subjects with similar parameters. Thus, the most salient features that are 

characteristic to signal class of interest should be established. This problem 

can be reformulated as feature extraction. 

New emerging tool for signal analysis, a wavelet transform, was shown 

useful in the processing of non-stationary signals. Thus, it was decided to 

investigate the benefits of moving from time domain to wavelet domain in the 

processing of biomedical signals: transient evoked otoacoustic emissions. 

The aim. The aim of this dissertation is to investigate and to develop new 

wavelet analysis based methods for denoising and detection of complex, non-

stationary biomedical signals and to adopt them to the signals of transient 

evoked otoacoustic emission. 

Novelty. The framework of signal denoising and detection in the discrete 

wavelet transform domain is established. New threshold estimation method 

was proposed in wavelet based denoising of signals of transient evoked 

otoacoustic emission. Novel, wavelet coefficient selection based denoising 

method, was developed. Time-frequency features and neural network to 

combine these features were suggested in the problem of transient evoked 

otoacoustic emission signal detection. 

Practical implementation. All the developed methods and algorithms 

were designed taking in to account speed and practical implementation. 

They were implemented using scientific computing language Matlab5.3, 

MathWorks, Inc., which is becoming a standard in computation science and 

engineering. 

Reliability of the results. All the developed new algorithms were tested 

on the large database consisting of 5213 signals. 
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The statistical hypothesis test was used to check if the difference between 

the methods was statistically significant. Although the resulting difference 

between the two signal classification methods was small, the hypothesis test 

showed that we could reject the null hypothesis, as the evaluated P value 

was 0.0002. 

With this dissertation author defends the following conclusions: 

1. The methods based on time- frequency (time- scale) signal 

decompositions are more suitable for filtering and detection of non-

stationary biomedical signals when comparing with methods based only 

on time or frequency analysis. 

2. The feature of wavelet transform to concentrate the energy of the 

correlated signal into a few high energy coefficients while scattering the 

energy of the noise into many low amplitude coefficients can be used for 

the non-linear filtering. Non-linear filtering of the signal can be 

accomplished by the non-linear processing of the wavelet coefficients. 

3. The results of wavelet based non-linear filtering depend on the used 

analyzing wavelet. We have formulated the criterion of the optimality of 

the wavelet for the given signal. It is a measure of the energy 

concentration expressed as Shannon entropy. In case of otoacoustic 

emission the best results among orthogonal wavelets with finite time 

support showed "Symmlet 8" wavelet. 

4. The optimal threshold for non-linear wavelet shrinkage can be estimated 

by solving the problem of the maximization of some optimality criterion. 

In case of otoacoustic emission, the cross correlation coefficient between 

subaverages can be used as the criterion of the optimality. 

5. The feature of wavelet transform to localize in time and in frequency at 

the same instant can be used to establish the statistical location of the 

non-stationary signal components in time- frequency plane and for time- 

frequency filtering. 

6. The cross correlation coefficients calculated among time and frequency 

limited components of the signal can be used as the features for the 

TEOAE signal detection. These features can be very efficiently calculated 

directly in wavelet domain. 
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7. Wavelet based TEOAE filtering enabled to increase the specificity of the 

TEAOE signal detection by 16% without any decrease of the sensitivity. 

8. The neural network was suggested for combining the extracted features in 

the application of separation hearing impaired and normal hearing 

subjects. However, the increase in accuracy of the subject separation is 

small when comparing with feature combiner, which uses average of the 

features. This suggests similar weights of the features. 
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Abbreviations 
ANN Artificial neural network 

DFT Discrete Fourier transform 

DWT Discrete wavelet transform 

FN False negative 

FP False positive 

GCV Generalized cross validation 

HI Hearing impaired subject 

HTL Hearing threshold levels 

MAD Median Absolute Deviation 

MHL Mean hearing level 

MLP Multilayer perceptron 

MRA Multiresolution analysis 

MSE Mean square error 

NH Normal hearing subject 

OAE Otoacoustic emission 

PSD Power spectral density 

ROC Receiver operator characteristic 

SNR Signal-to-noise ratio 

SPL Sound pressure level 

STFT Short time Fourier transform 

SURE Stein’s Unbiased Risk Estimate 

TEOAE Transient evoked otoacoustic emission 

TN True negative 

TP True positive 

Notation 
j - Level of the wavelet decomposition 

2j - Dyadic scale 

1/2j - Resolution 

J - Maximal level of decomposition 

L -
Length of the filter involved in 

wavelet decomposition 

O -
"Order of …" (in counting the 

number of operations) 
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2 Biomedical signals. Signals of transient 
evoked otoacoustic emission 

2.1 Biomedical signals in general 

A signal is a phenomenon, which carries information. Biomedical signals 

are signals that emanate from living systems. The analysis of these signals 

gives the information about the living system, which created the signal.  

Biomedical signals are used for diagnostic, monitoring and other goals. 

The process of information extraction can be simple as inspection by 

experienced eye of physician. However, often in biomedical applications the 

acquisition of the signal is not enough. It is required to process the signal to 

get the information, which is hidden in it. This may be because of the noise 

in the signal. Therefore, information cannot be seen with the "naked eye". 

The signal must be "cleaned". Different terms are used to describe this 

process: signal recovering, signal enhancing or signal denoising. 

The biomedical signals are classified according to their origin: bioelectric, 

bioacoustic, bioimpedance, biomechanical, biooptical, biomagnetic, 

biochemical signals. Further, they can be divided into two main groups: 

deterministic and stochastic. Deterministic signals can be divided in periodic 

and non-periodic, while stochastic signals- into stationary and non-

stationary. Such a vast variety of biomedical signals do not allow creating 

the universal methods, suitable for the processing of all the biomedical 

signals. Thus, it is a very important task today to identify the methods that 

are suitable for the particular signal classes and in opposite- to define the 

classes of the signals that can be treated with the particular method. 

Another important task is to achieve a full success in the particular 

application and to make a step further by identifying signal specific features 

and incorporation of all the a priori known information about the signal and 

system under investigation. 

In this investigation we will consider biomedical signal enhancement 

methods with the application to one of the bioacoustic signals- transient 

evoked otoacoustic emission (TEOAE), which can be used to extract 

information about the state of the hearing organ- cochlea.  
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2.2 TEOAE signal 

TEOAE is low-level sound produced by the cochlea as the response to the 

short acoustical stimulus. TEOAE is present usually in the normal hearing 

ear but absent, or attenuated, in the dysfunctional cochlea [47]. 

Gold [32] was the first who hypothesized otoacoustic emission in 1948 

and Kemp [47] was the first who recorded it in 1978. There is still no 

complete theory explaining TEOAE generation, yet. It is believed that the 

TEOAE is partial product of amplification process, which is present in the 

cochlea [35]. 

The main properties that characterize the TEOAE are: 

1. Non-linearity. Due to the non-linear nature of cochlear preprocessing of 

sound, the presentation of different frequencies leads to the generation of 

several additional combination frequencies. In addition, the physical 

properties of the basilar membrane mechanics in the cochlea change with 

stimulus level. This "compressive" non-linearity leads to compressive 

amplitude growth functions in the TEOAE acquisition. This property is 

used to separate the linear acoustical stimulus from non-linear response 

in time with the technique called "non-linear differential averaging" [6] 

2. Dispersion. Otoacoustic emissions (OAE) are delayed with respect to the 

onset of acoustical stimulation. OAE exhibit strong dispersion. The 

latency of otoacoustic emissions increases from approximately 3 ms at 

frequencies of about 6 kHz to more than 10 ms at frequencies near 1 kHz. 

Changing spectral characteristics of TEOAE signal causes it to be non-

stationary in time, which causes problems for signal filtering from the 

noise. Investigation of latencies of different frequency components in 

TEAOE signal attracted much of attention [40], [91], [92], [94], [58]. 

3. Reproducibility. Otoacoustic emissions are highly reproducible. The 

temporal and spectral properties of OAE are unique for each subject and 

are stable for long time ("fingerprint of the inner ear"). Because of this 

feature TEOAE signal can be treated as deterministic for the same subject 

and signal averaging technique can be used in order to increase signal to 

noise ratio. 

PC based systems are used for TEOAE recording. The click stimulus is 

produced by application of an 80 µs electrical pulse to the speaker in the ear 

canal probe. Stimuli are presented at a rate of 50 Hz. The stimulus voltage 

results in click levels of approximately 80 dB SPL in adult ears. The stimuli 

have flat spectra up to 4-5 kHz in the ear canal. The ear canal sound 
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pressure is sampled at 25.6 kHz for 20 ms after each stimulus with a 12-bit 

analog-to-digital converter and alternate samples are stored in separate 512-

point waveform buffers, resulting in two waveforms. 

Stimulus generator 

Stimulus 

ADC 

 

GATE 

Microphone 

Speaker 

Ear 

Bufer A 

Bufer B 

Signal processing 

algorithms 

 

Figure 2.1 System for TEOAE signal acquisition  
(ADC- analog to digital converter) 

The typical example of two subaveraged TEOAE waveforms is shown in 

Figure 2.2. Earlier described different features can be identified: both 

waveforms exhibit shorter periodicities or higher frequencies at shorter post 

stimulus times and both subaveraged waveforms show very high similarity 

or reproducibility in this case. 
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Figure 2.2 Example of TEOAE subaverages as recorded from a normal 
hearing subject having mean hearing threshold 9dB 

Although TEOAE is mainly object of the research yet, applications in 

clinical practice appear. TEOAE appeared to be useful in screening tests in 
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neonates [7], in population exposed by noise [8] and to monitor the influence 

of drugs [9]. The most promising application is hearing screening. Screening 

can be understood as a sieve separating subjects into hearing impaired and 

normal hearing. Preliminary large population studies of TEAOE screening in 

Norway (screening of hearing in population living near the airport) and 

Australia (monitoring cochlea function of the workers in the coalmine) 

revealed conveyance, readability and speed of the technique [24], [25]. 

The most important application of TEAOE test up to date is hearing 

screening. The purpose of any screening test is to act as a sieve that extracts 

a smaller set of cases from the screened population. A screening test is said 

to have 100% ''sensitivity'' when the extracted set of cases contains all cases 

to be identified. A ''specific'' screening test is one that is efficient in keeping 

down the number of cases reaching follow-up tests. The consequence of lack 

of specificity is the high cost and increase in the resources required by the 

follow-up centres, whereas the consequence of lack of sensitivity is that 

cases go untreated until they are identified by other means. 

There is a consensus that ears with hearing threshold levels (HTL) greater 

than 20 to 30 dB do not demonstrate TEOAE [47], [50]. The studies [42], [53] 

have shown that in order to have high sensitivity of the TEOAE test, the 

separation criterion should be high. However, the corresponding specificity is 

low in that case. The main reason for the poor specificity is noise 

contamination of the emission responses. For example, an increase of the 

signal-to-noise ratio by 0.6 dB increased the specificity (the "pass" 

percentage) from 83 to 86 % [6]. 

Thus maximizing signal to noise ration is of the most important technical 

challenges for applied TEAOE measurement. 
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3 Classical and new solutions of biomedical 
signal enhancement and detection 

We review classical methods of biomedical signal denoising and detection 

in this section. We formulate the problems associated with these approaches 

and point out the directions to solve them. 

3.1 Averaging 

The basic method used for enhancing biomedical signals including 

TEAOE is to make an average of the recorded signal obtained from several 

consecutive stimuli [88]. The signal must satisfy the following conditions in 

order to achieve good results: 

1. The signal epochs should contain a deterministic signal component, 

which does not vary for all the epochs 

2. The contaminating noise is a broadband stationary process with zero 

mean and variance σ2. 

3. Signal f[n] and noise v[n] are uncorrelated so that the recorded signal 

s(t) at the i-th realization can be expressed: 

 ]n[v]n[f]n[s ii +=  ( 3.1 ) 

After N time averaging it can be written: 

 ∑∑∑
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+=
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If all the previous conditions are satisfied the averaging result is: 

 ∑
=
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N

i

ii ]n[v
N

]n[f]n[s
1

1)
 ( 3.3 ) 

The averaged noise signals variance σ2 decreases N times and 

improvement in SNR (rms value) is √N. 

An example of the TEOAE signal subaverages with different numbers of 

realizations included in the average is shown in Figure 3.1. 

One of main drawbacks of such estimator is long averaging time to 

achieve signal estimate with suitable SNR for further analysis. In addition, 

the conditions for background noise normality can be broken during long 
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averaging time. Thus, in general averaging time is limited and other 

techniques for further signal enhancement are sought. 

 

Figure 3.1 Enhancement of TEOAE signal by means of averaging 
technique. The noise is progressively reduced by increasing number of sweeps 

N in each subaverage. ρ is the cross correlation coefficient between 
subaverages.  

3.2 Filtering 

Averaged signal estimate can be further enhanced with linear filter by 

exploiting the fact that the spectra of noise and response do not completely 

coincide. In case of standard TEOAE acquisition procedure two filters are 

used: low-pass with the cut-off 6.4 kHz to exclude instrumentation noise 

and high-pass, with the cut-off 0.6 kHz to exclude some of the stimulus 

artefact and the largest components of ambient and subject generated 

noise [6].  

The performance of a filtering procedure in reducing noise of TEAOE can 

be improved by optimising the frequency response of the filter. Optimisation 

of the cut-off frequency of the high pass filter has been performed in 

study [93]. The criterion for the optimum frequency was maximal 

reproducibility of the responses with the constrain to the loss of the cross-
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spectral energy. The same strategy was used in study [78] with the difference 

that bandpass filter was used instead of high pass and both cut-off 

frequencies low and high were optimised. The best results of the optimal 

filter in terms of increasing the post-filtering reproducibility was obtained 

when the procedure was applied to recordings whose reproducibility before 

filtering ranged between 60 and 80 %, i.e. for responses classified as partial 

pass. 

However, when the PSD of signal and noise overlap the highest increase 

in SNR with lowest distortion to the signal can be obtained by Wiener 

filtering approach. The Wiener filter is given by the transfer function: 

 ( ) ( )
( ) ( )ωω

ω
ω

nnss

ss

SS

S
H

+
=  ( 3.4 ) 

where Sss(ω) is power spectrum of the response and Snn(ω) is power 

spectrum of the noise. 

 

Figure 3.2 Filtering with Wiener filter: a) real TEOAE signal (SNR=∞), b) 
power spectrum of the clean signal, c) signal contaminated with white 

Gaussian noise (SNR=0.6dB), d) power spectrum of contaminated signal, e) 
filtered signal (SNR=8.8) and f) transfer function of the Wiener filter 

Since Sss(ω) and Snn(ω) are not known in advance they should be 

estimated from the records [89]. Figure 3.2 shows the experiment where real 

TEOAE signal (plot a) was contaminated with white Gaussian noise (plot c) 

and the signal after filtering with Wiener filter shown in plot f. Plot b shows 
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power spectrum of the clean signal, plot d shows power spectrum of 

contaminated signal. The gain in SNR after filtering is 7 dB. It is idealized 

situation as in real conditions the quantities Sss(ω) and Snn(ω) are not known. 

They have to be estimated from the recorded signal, thus errors in the 

estimates will lead to the lower performance.  

Another problem that faces Wiener filter, is non-stationary signals. The 

Fourier transform is used to estimate the transfer function of the filter. 

However, the Fourier transform is not localized in time space and removing 

noise at a specific frequency with Wiener filter also involves removing any 

signal components, which also share the same frequency. Thus, any change 

made to a Fourier coefficient is a global, effecting both noise and signal. 

To overcome the limitations of the Fourier analysis to represent non-

stationary signals, Short Time Fourier Transform (STFT) was proposed. It 

contains the time parameter and the frequency parameter as well. The 

localization in time is achieved by weighting or windowing previous infinite 

Fourier basis functions. If the Gaussian function exp(-t2) is used as the 

window function then it is known as the Gabor transform. The time 

resolution of the STFT is given by the time width of the window function. The 

spectrum is only captured with finite resolution, too. Here, the spectral 

resolution is given by the bandwidth of the window function. The product of 

the bandwidth and the time width of the window function is a constant, 

which depends only on the shape of the window function. In the case of the 

STFT, the division of the time-bandwidth product into time duration and 

bandwidth is the same for all values of frequency and time. Thus, STFT has 

a constant resolution. However, most of the biomedical signals are multi-

component in nature. They consist of high frequency components of shorter 

duration and low frequency components of longer duration. STFT is not 

adequate to such kind of signals. There was a need for the transform, which 

divides the time-bandwidths product differently at different frequencies and 

different times. This can be attained by the relatively new signal processing 

tool- wavelet transform [16]. 

3.3 Detection 

The signal detection problem is to decide whether the waveform consists 

of "noise alone" or signal "masked by noise". Our goal is to use the received 

data as efficiently as possible in making the decision while being correct 

most of the time.  



 

21 

More formally detection problem in discrete function domain could be 

formulated as "having received the signal s[n], form the function of the 

received data d{s[n]} and when make the decision based on its value".  

In clinical diagnostic applications, biomedical signals carry information, 

which is often interpreted as "true negative" (TN) or "true positive" (TP). For 

example, in TEOAE case, detected signal is interpreted as "negative" result 

indicating normally functioning cochlea, while response, which shows no 

TEOAE like activity is interpreted as "positive" result showing problems in 

the cochlea. 

 

Figure 3.3 Four members of the family of ROC curves. ROC curves are 
indexed over increasing range of SNR. The curve Nb. 1 indicates detection 

performance at the lowest SNR, Nb.4- at the highest. 

In practice we face with two problems when making the detection: how to 

form the function d{s[n]} and where to set the decision threshold T on 

function d{s[n]} so as to ensure that the number of decision errors is small. 

There are two types of errors possible: the error of missing the signal (decide 

"noise" when in reality is "signal+noise") and the error of false alarm (decide 

"signal+noise" when only "noise" is present). In biomedical diagnostic 

applications these errors are named "false positive" (FP) and "false negative" 

(FN). In case of TEOAE based hearing test FP result would point to the 

normally hearing subject as hearing impaired while because of FN result we 

would miss the hearing impaired subject. The probability to detect correctly 

normal hearing subject is named "Specificity" of the test. The probability to 

detect correctly hearing impaired subjects is named "Sensitivity" of the test. 
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These probabilities can be varied by choosing different decision threshold T 

in the output of the detector d{s[n]}. However, when one of the probabilities 

is increased, the other is decreased. A function of sensitivity as a function of 

the variable 1-specificity, when the decision threshold is varied over all range 

of the detector d{s[n]} values, is called receiver operating characteristic 

(ROC). Good detector should have ROC curves which have desirable 

properties such as concavity (negative curvature), monotone increase in 

sensitivity as specificity decreases, high slope of sensitivity at the point 

(Sensitivity, 1-Specificity)=(0,0) [38]. Simply stated, the goal of signal 

processing algorithms is to find ways to test between outcomes Negative and 

Positive, which push the ROC curve towards the upper left corner of Figure 

3.3, where both sensitivity and specificity are high. In practice, one operating 

point or the threshold T is chosen to meet particular requirements of the 

application. For example, in TEOAE based hearing test more important 

parameter is sensitivity than specificity. Thus, it is usually chosen to be 

high: 90 or 95 %.  

Another issue in the signal detection problem is the determination of the 

function d{s[n]}. This problem is known as pattern recognition problem [11]. 

It can be divided into the steps of feature extraction and combination of the 

features to form the function d{s[n]}. The stage of feature extraction involves 

the transformation of the received data s(n) in such a way as to reveal key 

features of a signal that are difficult or impossible to discern in the original 

domain. For example, Fourier transform reveals the composition of the 

signal in terms of building blocks, or basis functions of transformed domain: 

sines and cosines. Fourier transform depends on the one parameter- 

frequency. Time dependence is lost in the transform. It cannot be seen when 

exactly the spectral components of the signal appear and this is 

unsatisfactory for non-stationary signals. Thus, wavelet transform was 

planed to be used for extraction of the features. 

The final issue in the construction of detection function d{s[n]} is how to 

combine the extracted features. The features can be combined linearly and 

non-linearly. The weights for linear combination of the features can be 

chosen by doing regression analysis. However, the most exact detector can 

be achieved by using a artificial neural network as the non-linear feature 

combiner [37]. 
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4 Wavelets and wavelet transform 

In this section, we summarize some relevant aspects of wavelet theory, 

which was introduced by Yves Meyer and Jean Morlet in 1984. Later in 

section 4.2, we present some experiments and explorations of the relevant 

properties of wavelet transform. 

4.1 Wavelet theory 

Every function can be expanded in such a way: 

 )()()( twttf j

j

jψµ ∑+=  ( 2.1 ) 

where µ(t)- the mean of the function f(t), ψj(t)- system of elementary 

functions and wj are expansion coefficients that are defined as: 

 ∫
∞

∞−

= dtttfw jj )()( *ψ  ( 4.2 ) 

The possible examples of systems ψj(t) could be: signal dependant 

Karhunen- Loeve basis of eigen functions [99], complex sines and cosines in 

Fourier basis )exp()( tjt ωψ = . However, these functions are infinite in time 

and are not suitable for characterization of non-stationary signals, spectral 

characteristic of which are changing in time course. Another possibility is to 

choose the system, which consist of elementary functions that are well 

localized in time and frequency i.e. have rapid decay in time and frequency. 

Elementary functions would behave as time- frequency atoms giving 

possibility to represent the signal into joint time- frequency plane. Such 

localized systems of elementary functions are short time Fourier transform 

(STFT) and wavelet transform. The basis functions of STFT are windowed 

sines and cosines: 

 )exp()()( tjtwt ωτψ −=  ( 4.3 ) 

Where w(t) is window function, τ- shift in time parameter, ω- radial 

frequency. 

Basis functions of wavelet transform are defined as: 
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Where 




 −

a
btψ  is mother wavelet, b- time shift parameter, a- scaling 

parameter of the time variable t. 

There are many such mother wavelets and many systems of wavelet 

functions and wavelet transforms, which have different characteristics. Some 

example analytic expressions and shapes of wavelets are shown below: 

Morlet wavelet: 
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−=  ( 4.1 ) 

Wavelet transform with this wavelet is expressed as: 
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"Mexican hat" wavelet: 
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and wavelet transform: 
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With continuous parameters a and b, wavelet transform is called 

continuous wavelet transform (CWT) and is highly redundant having minor 

practical importance. 
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Figure 4.1 "Morlet" and "Mexican hat" wavelets  
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This redundancy is removed in another type of wavelet transform- the 

discrete wavelet transform (DWT). Signal transformed into discrete wavelet 

domain has as many coefficients as it has in original time domain. Another 

advantage of DWT to CWT is existence of the fast decomposition and 

reconstruction algorithm based on filter banks and changing of sample rate. 

The DWT stems from multiresolutional analysis and filterbank theory 

[57]. The multiresolutional analysis is a decreasing sequence of closed 

subspace {Vj}, which approximate square integrable functions space in L2(R). 

A discretized function f[n] is projected at each step j, onto the subset Vj. This 

projection is defined as the scalar product noted aj, of f(n) with a scaling 

function noted φ[n]: 

 ]kn[]n[fa
j

n
jjk −= −∑ 2

2

1 φ  ( 4.5 ) 

Here k is the translation parameter and j is the dilation parameter. 

Scaling function φ[n] has the following property: 

 ( ) ( )knkhn

k

−=




 ∑ φφ
22

1  ( 4.6 ) 

The sequence h(k) is the impulse response of a low pass filter. 

Each step smoothens the signal. The lost information can be restored 

using the complementary subspace Wj+1 of Vj+1 in Vj. This subspace is 

generated by a wavelet ψ(n) with integer translations and dyadic dilation; the 

projection of f(n) on Wj is defined as: 

 ]kn[]n[fw
j

n
jjk −= −∑ 2

2

1 ψ  ( 4.7 ) 

As the scaling function, the wavelet function has the following property: 

 ( ) ( )kn  kgn

k
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 ∑ φψ
22

1  ( 4.8 ) 

The sequence g[k] is the impulse response of a high-pass filter. 

Then the analysis is defined as: 
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For orthogonal wavelets, the restoration is performed with: 
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Thus, the function f[n] can be represented as the finite summation: 
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 ( 4.11 ) 

The wavelet coefficients wj,k and scaling coefficients ak comprise the 

wavelet transform. For a wavelet centred at time zero and frequency f, wjk 

measures the content of the signal around the time 2jk and frequency 2-jf (or 

level j). Wavelet transform of sampled signal can be computed extremely 

efficiently using two-channel filter banks structure [56] as it is shown in 

Figure 4.2. 
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Figure 4.2 The DWT using multirate filterbank algorithm (g[n] is the 

highpass filter, h[n] is the lowpass filter, ↓2 means down sampling operation). 
Wavelet coefficients W1,k represent the first level of decomposition (j=1),  W2,k 

represent the second level of decomposition (j=2), 

When a signal has n samples, they are ordered in wavelet domain as 

follows: 



 

27 

n / 2n / 4

w1,kw2,kw3,k

aJ,k

n / 8 n  

Figure 4.3 The order of the wavelet coefficients from different levels of 
wavelet decomposition in the vector of coefficients after wavelet 

transformation. Here n is the number of samples in the signal in the original 
time domain  

For DWT and IDWT structures shown in Figure 4.2 and Figure 4.4 to be 

valid, the coefficients of the filters g[n] and h[n] have to be chosen carefully. 

They have to satisfy three groups of conditions [16]: 

1. Conservation of area condition, 

2. Accuracy condition, 

3. Orthogonality condition. 

Thus, it is not easy to find the filters g[n] and h[n] satisfying all previous 

conditions and limited amount of wavelets for DWT were found. The most 

popular are:  

• Daubechies filters indexed by their length, Par, which may be one of 

4,6,8,10,12,14,16,18, 20; 

• Coiflet filters are indexed as 1,2,3,4 or 5; 

• Symmlets are wavelets within a minimum size support and as 

symmetrical as possible, as opposed to the Daubechies filters, which 

are highly asymmetrical. They are indexed from 4 to 10. 

These wavelet families differ in the smoothness and compactness of the 

basis functions. 
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Figure 4.4 The IDWT using filterbak (g'[n] and h'[n] are reversed versions 

of filters g[n] and h[n], ↑2 upsampling operations) 

Examples of some typical orthogonal and finite in time wavelets are 

shown in Figure 4.5. 

 

Figure 4.5 Examples of compactly supported orthogonal  wavelets 

4.2 Properties of wavelet transform 

4.2.1 Locality in time- frequency 

Wavelet basis functions are localized in time and are scaled versions of 

one mother function. A wavelet coefficient shows how much of the 

corresponding wavelet basis function ‘is present’ in the total signal: a high 

coefficient means that at the given location and scale there is an important 

contribution of a singularity. This information is local in time and in frequency 

(frequency is approximately the inverse of scale).  

Figure 4.6 shows six wavelets from the same family Symmlet 8 and 

corresponding frequency bands. Numbers in the brackets correspond to j, 

which shows the level of decomposition or the location of wavelet in 

frequency axis, and k is interpreted as the location of wavelet in time axis. 

Figure 4.3 shows that there are n/2 wavelets in the first level i.e. j=1, n/4 

wavelets in the level j=2 level there are n/4 wavelets and so on, where n is 

number of samples in original time domain. Thus, time resolution decreases 

in time level j or equivalently frequency is increasing. However, frequency 

resolution is increasing when level increases (the second plot in Figure 4.6 ). 
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In conclusion, wavelet coefficient carries local information. Manipulating 

of the wavelet coefficients causes a local effect, both in time and in 

frequency. 

 

Figure 4.6 Symmlet 8 wavelet examples ψj,k corresponding to different 
locations in time k and representing different frequency bands j. Here f is 

sampling frequency 

4.2.2 Energy concentration 

Wavelet transform of a smooth signal is concentrated in relatively small 

number of wavelet coefficients. On the other hand, the transform of a white 

noise signal spreads out over all coefficients.  

For example, signal representations in time domain, frequency domain 

and wavelet domain were compared in terms of energy concentration in a few 

large coefficients. Signals, shown in Figure 3.1 and white Gaussian noise 

were used for the experiments. 

Figure 4.7 shows three representations of white Gaussian noise: in time 

domain, frequency domain and wavelet domain. Coefficients were taken in 

absolute value, normalized to the range 0-1 and sorted in descending order. 
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Figure 4.7 Coefficients from different signal representations sorted in 
ascending order. TD - time domain coefficients, DFT- discrete Fourier transform 

coefficients, DWT- discrete wavelet transform coefficients. For the DWT 
Symmlet 8 as mother wavelet was used. 

Is obvious that curves of sorted DFT and DWT coefficients coincide, 

showing that no one is better in compaction of white Gaussian noise. 

Surprisingly, time domain representation of white Gaussian noise is more 

compact as it has less large coefficients than other representations. 

Figure 4.8 shows experiment with "correlated" signals that are depicted in 

Figure 3.1. However, in this case, time domain representation of the signal is 

the most "expensive": representation uses many large coefficients. In 

frequency domain, signals are more concentrated than in time domain, 

however wavelet representation shows the highest concentration of signal 

energy in a few large coefficients. Especially it is noticeable at low SNR 

(compare 2dB and 15dB plots in Figure 4.8). 

The energy concentration ability of wavelet transform depends on the 

number of vanishing moments m of mother wavelet ψ [95] : 
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Wavelet transform, which uses mother wavelet with many vanishing 

moments, is able to concentrate smooth signal very efficiently. However, the 

number of vanishing moments defines the number of coefficients N used in 

wavelet filter: N=2m. Thus, there is the contradiction between energy 

concentration ability of wavelet transform and time localization feature as 

increasing the number of filter coefficients increases time support of the 

wavelet. 

 

Figure 4.8 Coefficients from different signal representations sorted in 
ascending order. TD - time domain coefficients, DFT- discrete Fourier transform 
coefficients, DWT- discrete wavelet transform coefficients. For DWT Symmlet 8 

as mother wavelet was used. 

The next experiment shows the dependence of energy concentration of the 

wavelet transform as a function of the type of wavelet used and the number 

of vanishing moments. In order to evaluate quantitatively concentration of 

the energy we will use Shannon entropy, which has its roots in information 

theory [15]: 

 )wlog(w)w(H ii i
22∑−=  ( 4.13 ) 

Here wi are the wavelet coefficients. 
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Shannon entropy can be interpreted as energy concentration measure: 

large H value indicates high entropy and low energy concentration, while 

smaller H indicates lower entropy and higher energy concentration.  

In the energy concentration experiments the same signals as in Figure 3.1 

were used. Figure 4.9 shows entropy dependency on the SNR and on 

vanishing moments (Par) in Symmlet type wavelet. It can be seen that 

entropy or energy concentration depends on the wavelet and SNR. However, 

there is an optimal wavelet, which achieves the highest concentration at all 

SNR ratios. It is Symmlet wavelet with 8 vanishing moments. 

 

Figure 4.9 Entropy as the function of SNR and the number of vanishing 
moments (Par) in Symmlet type wavelet 

In group of Coiflets there is no optimal wavelet, which would concentrate 

energy equally well at low SNR and high SNR rates. For example, Coiflet5 

concentrates very well at 15 dB SNR, however, at 3 dB concentration is even 

worse than with Coiflet 3. 

Similar situation is in the group of Daubechies wavelets. There is no 

wavelet, which is optimal in all SNR range and overall concentration ability 

of these wavelets is somewhat lower than of the wavelets in other groups.  
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Figure 4.10 Entropy as the function of SNR and the number of vanishing 
moments (2*Par) in Coiflet type wavelet 

 

Figure 4.11 Entropy as the function of SNR and the number of vanishing 
moments (Par/2) in Daubechies type wavelet 

 

4.2.3 Energy preservation 

Discrete orthogonal wavelet transform preserves energy of the signal i.e. 

Perseval's equality admits: 

 ∑∑
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4.2.4 Fast implementation 

Discrete wavelet transform implemented as a filterbank is efficient and 

fast. Decomposition of the computation into elementary cells and the 
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subsampling operations (decimations) that occur at each stage makes the 

DWT to be fast [95]. The operations required by one elementary cell at the jth 

octave are counted as follows. There are two filters of equal length L 

involved. The "wavelet filtering by h(n) directly provides the wavelet 

coefficients at the considered octave, while filtering by g(n) and decimating is 

used to enter the next cell. A direct implementation of the filters g(n) and 

h(n) followed by decimation requires 2L multiplications and 2(L-1) additions 

for every set of two inputs. That is, the complexity per input point for each 

elementary cell is: 

 cellpointadds 1-L      and      cellintpo.mult L  ( 4.15 ) 

Since the cell at the jth octave has input subsampled by 2j-1 , the total 

complexity required by a filter bank implementation of the DWT on J octaves 

is (1+1/2+1/4+…+1/(2J-1) times the complexity ( 4.15 ). That is : 

pointadds ))(L(      and      intpo.mult )(L2 
JJ −− −−− 211221  ( 4.16 ) 

The DWT is therefore approximately equivalent, to one filter of length 2L 

and full decomposition of N point signal would take O(2LN) multiplications. 

However, often we are not interested in a full decomposition until the level J. 

Thus, actual number of required operations in practice is less and even less 

than the amount of operations involved in FFT- N log2(N).  
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5 Non-linear filtering 

Conventional linear filters (optimal Wiener filter, Kalman filter, e.t.c.) may 

smoothen details, they are very poor for impulsive noise removal. While 

conventional non-linear filters (median filters) may induce false details and 

they are very poor for white noise removal [89]. Pioneering works of Donoho 

and Johnstone [20], [18] introduced wavelet based non-linear filtering for 

non-stationary signals. They named it as "wavelet based denoising". 

Wavelet based denoising is motivated by three observations and 

assumptions: 

1. Decorrelating property of wavelet transform creates a sparse signal: 

most untouched coefficients are zero or close to zero. 

2. Noise is spread out equally over all coefficients. 

3. The noise level is not too high, so that we can recognize the signal and 

the signal wavelet coefficients. 

The denoising procedure is relatively simple:  

1) Transformation of the signal into wavelet domain, 

2) Thresholding of small coefficients with well chosen threshold λ and 
leaving large coefficients that most probably represent the clean signal, 

3) Transforming back into time domain via inverse wavelet transform.  

We expect that wavelet based denoising should be useful in biomedical 

applications (for example TEOAE signal estimation problem) to reduce the 

averaging time and probability of over smoothing the signal to be estimated. 

5.1 Wavelet transform of the signal with noise 

It can be assumed that the recorded signal s[n] is a linear summation of a 

noise free signal f[n] and a noise process v[n]: 

 ]n[v]n[f]n[s +=  ( 5.1 ) 

The vector s[n]  represents the input signal. The noise v[n] is a vector of 

random variables, while the untouched values f[n] are a purely deterministic 

signal. 

The aim is to recover the original signal f[n] with a small mean-square-

error: 
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Where ]n[s
)

is the estimated signal after wavelet based denoising. 

The linearity of a wavelet transform leaves the additivity of model ( 5.1 ) 

unchanged. We get: 

 jkjkjk wvwfw +=  ( 5.3 ) 

where wjk, wfjk, and wvjk are wavelet coefficients of s(n), f(n) and v(n), 

respectively, at level j and time index k. 

Manipulation with wavelet coefficients influences the signal in time and 

frequency locally. This feature of filtering makes it non-linear. In the 

following, we will describe two procedures for the manipulation with wavelet 

coefficients: wavelet coefficient shrinkage and novel method: wavelet 

coefficient selection from the region of interest. In addition, we will introduce 

new method for the estimation of threshold. Finally, we will compare and 

discuss the ability of different wavelet based denoising methods to reduce 

the noise in oscillatory signals. 

5.2 Wavelet coefficient shrinkage for non-linear filtering 

The manipulation of wavelet coefficients based on coefficient shrinking 

involves selection of shrinking function η(λ) and threshold λ. 

5.2.1 Non-linear shrinkage functions 

Hard shrinking function. The policy for hard thresholding is to keep it or 

“kill”. The absolute values of all wavelet coefficients are compared to a fixed 

threshold λ. If the magnitude of the coefficient is less than λ, it is replaced by 

zero. Thresholding is described by shrinkage functions. For hard 

thresholding shrinkage function is: 
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Hard thresholding is used when one is interested in the shortest possible 

wavelet code. Long sequences of zeros that are obtained in thresholded 

wavelet decomposition vector are coded in efficient way. The graph of the 

function performing the hard thresholding is shown in Figure 5.1. 
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Figure 5.1 Hard shrinkage function 

Soft thresholding. This shrinkage function was introduced by Donoho 

[17]. The soft thresholding shrinks all the coefficients towards the origin: 
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Soft shrinking function is more continuous than hard. The graph of the 

function performing the soft thresholding is given in Figure 5.2. 

 

Figure 5.2 Soft shrinkage function 

Other functions proposed in [7], [103] are intermediate and have 

smoother transitions from noisy coefficients to important ones. 

5.2.2 Threshold estimation 

Another important issue in the procedure of wavelet coefficient shrinkage 

is the assessment of the threshold λ. It is sought, usually, to fulfil the 

criterion ( 5.2 ), but later we will introduce a new criterion for selection of λ. 

We found these threshold estimation methods in the literature: 

• Universal. Johnstone and Donoho proposed universal threshold [21]: 



 

38 

 Nln2σλ =  ( 5.6 ) 

Here σ is standard deviation of estimated noise level, N is the length of the 

signal in samples. 

Together with soft shrinkage function and Gaussian white noise, this 

threshold choice produces noise-free reconstruction, but at cost of shrinking 

genuine features. Hard thresholding preserves features (peak heights), but 

yields less smooth fit. 

The next two methods are based on MSE criterion ( 5.2 ). 

• SURE (Stein’s Unbiased Risk Estimate) shrink. This threshold selection 

scheme proposed by Johnstone and Donoho [18] is based on the 

estimation of the MSE function: 
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Here N1 is the number of coefficients with magnitude above the threshold, 

wλI are shrunk wavelet coefficients, wI are wavelet coefficients before 

shrinkage. The optimal threshold λ is chosen as: 

 )(SUREminargopt λλ =  ( 5.8 ) 

In practice, we have to estimate variance of the noise σ2. 

• GCV (Generalized Cross Validation). This scheme of threshold selection 

was proposed by Weyrich and Warhola [97]. First, the GCV function is 

formed: 
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Here N0 is the number of coefficients replaced by zero. This is a function 

of threshold value as in SURE shrink case, however it uses only known 

parameters. It has approximately the same shape as the MSE. The optimal 

threshold λ is estimated by minimizing GCV function:  

 )(GCVminargopt λλ =  ( 5.10 ) 
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5.2.3 Alternative method for threshold estimation 

This method is derived for comparison with previous threshold estimation 

methods and is using some heuristics as in [5] together with the step of 

optimisation as in SURE shrink and GCV methods. 

We will estimate the optimal threshold λopt by defining the function, which 

is depending on it as it was done in previous methods. This function will be 

the dependence of cross correlation coefficient ρ between the two noisy signal 
replicates on the applied threshold: 
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In addition, we introduce a constrain in the maximization problem ( 5.11 

) the maximum number of zeroed coefficients should not exceed some 

fraction of the total number of coefficients. This constrain is motivated by 

the "fear" of zeroing all the coefficients in seeking the maximum of ρ. An 

example in Figure 5.3 explains the method. 

 

Figure 5.3 Wavelet coefficients of the TEOAE signal decomposition: a) at 
level 2, b) at level 3, c) at level 4. The dashed horizontal lines show optimal 

threshold λopt. The estimation of λopt is explained in the axes d, e and f. The 

dots represent the estimates of the function ρ(λ) and the lines- the fitted 
polynomials 
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Due to inherent smoothness of ρ(λ) in case of soft shrinkage, only a few 
evaluations of the function ρ(λ) is needed to fit the model using the third 

order polynomial. Thus, in practice λopt can be found very efficiently by 

finding the maximum of the polynomial e.g. calculating the derivative and 

equating it to zero. 

5.3 Wavelet coefficient selection for time- frequency 
filtering 

Another approach to the wavelet based denoising is time- frequency 

filtering by using the feature of wavelet transform to localize in time and in 

frequency. 

Many investigations using time- frequency energy distributions and 

wavelet decompositions have been carried out to establish the location of 

TEAOE signal components in time- frequency plane [91], [92], [94], [100], 

[102], [105]. However, the available amounts of the TEOAE records in these 

investigations were rather small (from 20 to 50 signals). Thus, the achieved 

accuracy of the general localization was limited. The general time- frequency 

properties of the non-stationary signals can be determined more accurately 

by using statistical averaging when available amount of the signals is large. 

For example, we computed the average of the spectrograms obtained from 

2000 TEOAE signals (Figure 5.4). 

 

Figure 5.4 Averaged spectrogram of 2000 TEAOE signals 

The contour map shows the distribution of the energy of the averaged 

TEAOE signal simultaneously in time and in frequency. The different 

latencies and durations of frequency components evidence non-stationary 

character of these signals. The specific composition of TEAOE signal- higher 
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frequency components have shorter duration and latencies than the signal 

components with the lower frequency- conforms very well with the feature of 

the wavelet transform to analyse the signal with increasing time resolution 

when frequency increases. Thus, we define the method of non-stationary 

signal filtering by determining the average location of signal components in 

wavelet domain and selecting relevant wavelet coefficients by using a mask 

or indicator function.  

An important issue here is the determination of the region of interest in 

the time frequency plane. The ensemble correlation technique was proposed 

by Sörnmo and Atarius in study [4] for the enhancement and end point 

determination of late potentials in high resolution ECG. This technique was 

successfully adopted by Janušauskas et.al. [40] in TEOAE analysis for the 

determination of the latency of filtered TEOAE components. Our aim is to 

define general location of TEOAE signal in wavelet domain. 

Generally, the symbolic location of TEOAE in wavelet domain is shown in 

Figure 5.5. The horizontal rows of rectangles are wavelet coefficients 

corresponding to octave frequency bands. Wavelet coefficients in the highest 

raw represent high frequency band, the middle raw represents middle 

frequency band and the lowest one represents low frequency band. The 

shaded rectangles symbolically show the location of the typical TEOAE signal 

in time- frequency plane. 

 

Figure 5.5 Symbolic location of TEOAE signal in the time- frequency plane. 
Each rectangle represents one wavelet coefficient 

In order to identify the levels of wavelet decomposition, in which the 

energy of the average TEOAE signal resides, we transformed 2000 signals 

and calculated the average distribution of the energy among all the levels of 

decomposition. Figure 5.6 shows this distribution. It can be seen, that most 
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of the energy (>90%) is concentrated in the frequency band 0,8- 6,4kHz, 

which corresponds to three levels of wavelet decomposition- level 2, level 3 

and level 4. Thus, it is acceptable to consider only these levels. 

 

Figure 5.6 The distribution of the energy of averaged 2000 TEAOE signals 
in the octave frequency bands, which correspond to the levels of wavelet 

decomposition 

The definition of the region interest in different levels of the decomposition 

is explained in Figure 5.7. 

 

Figure 5.7 a) The average distribution of the energy of TEAOE signal in 
time- frequency plane, and distribution of the energy among wavelet 

coefficients in the selected levels of decomposition: b) level 2 (frequency band 
3.2-6.4kHz), c) level 3 (frequency band 1.6- 3.2kHz), d) level 4 (frequency band 
0.8- 1.6kHz). Here k is the index of wavelet coefficient (corresponds to the time 

in time domain) 

Figure 5.7 shows average distribution of the TEOAE signal energy in each 

of the selected levels. The time window, in which is higher likelihood to find 
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the component of TEOAE signal, can be defined by applying some threshold, 

as it is shown in axes b, c and d of the Figure 5.7. The determined levels and 

windows in these levels form the region of interest R in time- frequency 

plane. The time- frequency filtering of TEOAE signals can be accomplished 

by the application of the indicator function on the transformed signal in 

wavelet domain: 

 ( ).k,jI  )k,j(w)k,j(ŵ =  ( 5.12 ) 

Here w(j,k) wavelet coefficient at level j and time location k. The indicator 

function I(j,k) is defined as: 
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In this case, the criterion of the importance is the location of the 

coefficient in transformed domain and not the magnitude of as it was in 

previous filtering methods. 

5.4 Simulations. Comparison of the different denoising 
methods 

The simulations were performed to evaluate different wavelet based 

denoising methods described in section 5. 

5.4.1 Data set for experiment 

An ensemble of TEOAE signal realizations was used in order to compare 

the performance of different wavelet based denoising methods in case of real 

biomedical signal and natural noise. Four pairs of subaverages were used: 

1. Subaverages of the first pair were averages of the four realizations (N=4) 

of the TEOAE signal, 

2. Subaverages of the second pair were averages of N=16 realizations of the 

TEOAE signal, 

3. Subaverages of the third pair were averages of N=60 realizations of the 

TEOAE signal, 

4. Subaverages of the fourth pair were averages of N=600 realizations of the 

TEOAE signal. 

Each pair represents different quality of the signal and different averaging 

time needed to record the signal. In order to reduce the probability of taking 

the sample of the best quality from the ensemble, the procedure was 
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repeated 300 times, each time randomly mixing the realizations in the 

ensemble (random permutation of rows of the signal matrix was used). 

Therefore, the denoising procedure was repeated 4x300 times with each 

method. 

5.4.2 The denoising parameters and measures of performance 

The signals were transformed and reconstructed using Symmlet 8 

wavelet. This wavelet is the most symmetrical among the finite compactly 

supported wavelets. The property of symmetry ensured the highest energy 

concentration in the wavelet domain using this wavelet as it was shown in 

the example experiments in section 4.2.2. The maximum decomposition level 

has been set to J=5. For reconstruction only j=2, j=3 and j=4 levels were used 

as it is expected that most of the TEOAE signal energy is concentrated in the 

frequency band 0.8-6.4kHz. 

In the literature, most of the denoising methods study only the case of a 

white Gaussian noise. Johnstone and Silverman [43] have studied the case 

of correlated noise. They found that on each scale the noise coefficients 

follow approximately a Gaussian distribution. From these findings they 

proposed to use different thresholds for different scales i.e. to make 

threshold level depended. We used this level dependent strategy as our 

signal was made colored after bandpass filtering in the recording hardware. 

Zero lag cross correlation between subaverages was chosen as the 

performance measure of the signal estimates: 
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Here x[n] and y[n] are subaverages, N is length of the signal. 

The estimate of standard noise deviation jσ̂ , which is needed for "Universal" 

and "SURE" threshold estimation methods, was calculated as: 

 )w( MAD
.

ˆ jj 67450
1=σ  ( 5.15 ) 

MAD is the median absolute value of wavelet coefficients in the level j and is 

estimated as: 
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 { }
jj wmedianwMAD   )( =  ( 5.16 ) 

All simulations have been carried out 300 times, and the minimum, 

median and maximum of the performance measure are presented in the 

tables. 

5.4.3 Simulation results 

The results of denoising with different threshold estimation methods 

using "soft" shrinkage functions are presented in Table 5.1 and Table 5.2. 

The "hard" shrinkage function was used only with "Universal" threshold and 

denoising results are presented in Table 5.3. A visual control of denoising 

methods at different ensemble sizes (equivalently at different SNR ratios) can 

be carried out by inspecting the figures Figure 5.8, Figure 5.9, Figure 5.10 

and Figure 5.11.  

"Hard" thresholding function is not suitable for “GCV”, “SURE” and 

"Alternative" methods. Thus, it was used only with "Universal" threshold 

estimation method. Preliminary experiments showed that with "Hard" 

shrinkage, threshold dependant functions are not continuous and proper 

minimum in “GCV” and “SURE” cannot be attained. Similarly, we met the 

same problem in maximization of threshold dependant function in the 

"Alternative" method. 

The worst results showed “GCV” method: the median ρ value at all the 

ensemble sizes is the lowest. It is even lower when comparing with "No 

denoising". Other denoising methods gave improvement in comparison to 

unprocessed data. The largest improvement is obtained with method 

"Selection". If we draw up methods in ascending order according the 

improvement of median ρ value, we will get “GCV”, “SURE”, “Universal”, 

“Alternative”, “Selection”. 

However, comparison of the ranges between minimum and maximum of ρ 

values in Table 5.1 and Table 5.2 changes previous ordering of the methods. 

"Selection" method has the largest spread of results at the smallest ensemble 

sizes. This feature increases the probability to achieve high ρ value only by 
chance, even when no deterministic signal is present in the recorded 

ensemble. However, more investigations are needed to validate this method. 
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Table 5.1 Comparison of different threshold estimation strategies when Soft 

shrinkage function was used for denoising ( N is the number of realizations 

included in the subaverages) 

Soft shrinkage function 

Threshold ρρρρ, % N=4 N=16 N=60 N=600 

 Max ρ 39 63 85 97 

No denoising Median ρ 19 47 76 96 

 Min ρ -18 6 58 95 

 Max ρ 54 72 89 98 

Universal Median ρ 21 52 79 97 

 Min ρ -23 5 58 95 

 Max ρ 46 68 87 98 

SURE Median ρ 20 50 78 97 

 Min ρ -10 14 58 95 

 Max ρ 52 71 87 98 

GCV Median ρ 13 37 62 84 

 Min ρ -15 1 18 44 

 Max ρ 50 74 90 98 

Alternative Median ρ 23 54 81 97 

 Min ρ -20 15 58 96 

 

Table 5.2 The performance of the denoising method based on wavelet 
coefficient selection 

Method ρρρρ N=4 N=16 N=60 N=600 

Wavelet  Max ρ 59 83 94 99 

Coefficient Median ρ 33 65 86 98 

Selection  Min ρ -36 15 62 97 
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Table 5.3 shows the performance of "Universal" threshold using "hard" 

shrinkage function. Comparison with the "soft" shrinkage function shows no 

advantages. 

Table 5.3 The performance of the denoising method based on wavelet 
coefficient thresholding using "Universal" threshold 

Hard shrinkage function 

Threshold ρρρρ, % N=4 N=16 N=60 N=600 

 Max ρ 50 69 84 97 

Universal Median ρ 20 48 75 96 

 Min ρ -8 7 53 95 

Figures from 5.8 to 5.11 are presented for visual indication how the 

different denoising methods work at different sizes of the ensembles. 

Figure 5.8 shows the case when only 4 realizations were used for 

subaveraging. Thus, the signals appear very noisy. The method of "Selection" 

shows the cleanest estimate of the signals. 

2 4 6 8 10 12 14 16 18 20

"No denoising" ρ=32%

"Universal" ρ=40%

"SURE" ρ=34%

"GCV" ρ=25%

"Alternative" ρ=37%

"Selection" ρ=51%

time, ms

 

Figure 5.8 Denoising example, when 4 realizations were used for 
subaveraging  
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Figure 5.9 presents the denoising example when more realizations (N=16) 

were used. However, the unprocessed and estimated signals are still noisy. 

The best results in terms of improved ρ value showed proposed methods: 

"Alternative" threshold estimation and wavelet coefficient selection. They 

increased ρ value from 37 % to 44 % and 56 % respectively. 

2 4 6 8 10 12 14 16 18 20

"No denoising" ρ=37%

"Universal" ρ=39%

"SURE" ρ=37%

"GCV" ρ=22%

"Alternative" ρ=46%

"Selection" ρ=56%

N=16

time, ms

 

Figure 5.9 Denoising example, when 16 realizations were used for 
subaveraging 
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Figure 5.10 shows subsequent improvement in signal estimates when the 

number of realizations in the subaverages was increased. Again, substantial 

improvement in ρ value was achieved when using "Selection" method. 

2 4 6 8 10 12 14 16 18 20

"No denoising" ρ=64%

"Universal" ρ=70%

"SURE" ρ=66%

"GCV" ρ=52%

"Alternative" ρ=70%

"Selection" ρ=82%

time, ms

N=60

 

Figure 5.10 Denoising example, when 60 realizations were used for 
subaveraging 
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The last Figure 5.11 presents almost noise-free signals as the ensembles 

of realizations were very large: 600 realizations for each subaverage. The 

improvements provided by the denoising methods were small as there was 

nothing to improve: ρ value even in unprocessed signal was very high – 

94 %. 

2 4 6 8 10 12 14 16 18 20

"No denoising" ρ=94%

"Universal" ρ=95%

"SURE" ρ=94%

"GCV" ρ=78%

"Alternative" ρ=96%

"Selection" ρ=96%

time, ms

N=600

 

Figure 5.11 Denoising example, when 600 realizations were used for 
subaveraging 

5.4.4 Summary 

Different denoising methods were compared in the problem of the TEAOE 

signal denoising. Two of them were proposed by the author: "Alternative" 

estimation of the threshold, and denoising based on wavelet coefficient 

"Selection". The proposed methods showed better results in terms of 

improvement of cross correlation value ρ between two subaverages of TEOAE 
signal than other wavelet based denoising methods found in the literature. 

In general, simulations showed that wavelet based denoising can be used 

for subsequent enhancement of the signal after ensemble averaging. For 

example, the highest panel of Figure 5.10 shows the unprocessed signal, 
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which is the average of 60 realizations, and is very close in quality with the 

signal in lowest panel of Figure 5.9 based only on 16 realizations. Thus, 

wavelet denoising can be used to save time. Especially it is true when using 

fast DWT based on filterbanks. 

When comparing wavelet denoising methods individually, wavelet 

coefficient "Selection" method was found the best in terms of improved ρ 
value. However, this was achieved using extensively a priori knowledge about 

the location of the signal components in time frequency plane. Such 

knowledge can be acquired very efficiently by using ensemble correlation 

technique in time- frequency plane as it was shown in [40]. Thus, 

improvement from 10 to 20 %, when comparing "Selection" method with "No 

denoising" is encouraging result. Less of a priori knowledge is needed in 

"Alternative" threshold selection method. The only parameter, which has to 

be chosen heuristically, is the maximal number of wavelet coefficients 

allowed to be zeroed after the thresholding operation. However, the 

maximization of the function ρ(λ) when estimating the optimal threshold is 

still time consuming operation, which can "burn" the time saved from 

averaging. 

Other denoising methods showed smaller improvement than proposed 

methods. Especially GCV method was not adequate to the problem. One 

possible reason for the unsatisfactory results of this method might be too 

short signal length of 512 samples. 
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6 Time- frequency feature extraction for 
signal detection 

The signal detection problem requires the conversion of patterns to 

features that are a condensed representation of patterns, ideally containing 

only salient information. These features are used often in biomedical signal 

detection problems: amplitude, bias, duration, phase, energy, moments, 

Karhunen- Loeve eigenvalues [11]. Statistical measures such as cross 

correlation and cross- spectrum between two replicate recordings of the 

biomedical signal are used too, for example, for TEAOE detection. However, 

in case of non-stationary multi component biomedical signals zero-lag cross 

correlation coefficient, when calculating it for all the length of the signal, 

may be low because of the high noise level in the recorded signals. One of 

the possibilities for increasing the detection performance is to use only these 

time and frequency intervals of the signal in which higher probability is for 

the presence of the signal components. One problem in this approach is 

efficient splitting of the signal into time and frequency limited signal 

components. 

In the following, we will show how this task can be accomplished very 

efficiently in wavelet domain. First, we will prove that calculation of cross 

correlation coefficient between band limited signals in time domain is 

equivalent to calculation of cross correlation coefficient between wavelet 

coefficients from the corresponding levels of discrete orthogonal wavelet 

decompositions of these signals. The consequence of this equality is savings 

of time in the calculations, since the signal in wavelet domain is represented 

by fewer coefficients than in time domain. Second, it will be shown that 

windowing the signal in time domain has an analog in wavelet domain. By 

combining these two observations we proposed efficient way to calculate 

cross correlation coefficients between the time and frequency limited 

intervals of two signals. 

6.1 Correspondence of cross correlation calculations in 
time domain and in wavelet domain 

As we know, reconstructing signal from wavelet coefficients from one level 

only is equivalent to band pass filtering. Normalized product of two signals x 

and y reconstructed in such a way will give us their cross correlation in 

frequency band corresponding to scale 2j. If denote by xj and yj 

reconstructions of signals x and y, respectively, from their wavelet 

coefficients at scale 2j, then: 
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Orthogonality property of wavelet transform gives: 
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Where Kronecer delta δ is: 
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Hence from ( 6.1 ) and ( 6.2 ): 
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Taking into account ( 6.3 ) we can write: 
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This shows that correlation coefficient of two signals in a frequency band 

corresponding to an octave of multi resolution decomposition can be 

efficiently obtained as scalar product of vectors of wavelet coefficients from a 

given decomposition level. 

As we can see from ( 6.5 ) the main advantage in using wavelet transform 

in comparison with conventional bandpass filtering is gain in speed of 

calculations: splitting the signal into frequency bands takes as much as 

wavelet transform until the level J while calculation of cross correlation 

coefficients takes less time again, because the numbers of coefficients in the 

levels are reduced from N to 2J-j. 

6.2 Time windowing in wavelet domain 

The most important property of the wavelets is locality in time and in 

frequency. Each coefficient in wavelet domain corresponds to small interval 

in time domain. Thus, weighting of the wavelet coefficients in the particular 



 

54 

scale in wavelet domain is the same as the time windowing of bandpass 

filtered component of the signal in time domain: 
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Here sj is the reconstructed signal component at level j, Wj  is the time 

window N samples long for scale j, jkW
)

 is the window 2J-j samples long in 

wavelet domain. 

The straightforward way for construction of the weighting window jkW
)

 is 

decimation of original window similarly as it was done, when transforming 

the signal into wavelet domain. The windowing operation ( 6.6 ) can be 

rewritten as: 

 ( ) ( )kn  nWw]n[W  ]n[s jj

k

jkjj

jJ

−= −−

=
∑

−

22
2

1

ψ  ( 6.7 ) 

Relevant coefficient selection is another choice to accomplish the 

windowing in wavelet domain. Particularly it is convenient when no 

reconstruction is planed and just gross parameter like cross correlation 

coefficient is to be calculated. In this case the number of coefficients used for 

calculation is reduced 2 j times in comparison with original time domain 

calculations. The relation between time t and time index k in the 

decomposition level j is found as: 
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Here t∆ is time interval of signal sampling in time domain.  

The final band- and time- limited cross correlation coefficient, which can 

be used as a feature in signal detection problem, can be written as: 
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Where wj,k and wj,k  are wavelet coefficients of the signals x and y from the 

decomposition level j and where m and n are indexes of the first and last 

coefficient in the respective window. 
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6.3 Artificial neural network for signal detection 

As it was written in section 3.3, artificial neural network can be employed 

to combine extracted time-frequency features into signal detection function 

d{s(n)}. Subsequent decision about the presence of the signal in the record is 

based on the threshold applied to the d{s[n]}. Why should we use neural 

network in combining the features? The reason is that biological non-

linearity's are present in production of most biomedical signals as for 

example in TEOAE, EEG. Thus, the combiner, which could account for any 

non-linear relationships among extracted features, would perform better 

than combiner restricted to be only linear in the signal detection problem. 

Another reason is that probability of signal detection can be maximized by 

using a priori knowledge in teaching the network from a set of input/output 

data. The network, which was taught on part of the data, can generalize to 

another data. This property is equivalent to drawing the optimal detection 

function d{s[n]}. 

The artificial neural network is represented by a structure, consisting of 

units called neurons and connections called weights as seen in Figure 6.1. 

Each neuron is a unit that computes the weighted inputs from neighbouring 

neurons. The output of a neuron depends on the input values and an 

activation function. This output can in turn serve as one of the input values 

for other neurons. The weights are multiplicative coefficients that can 

change the influence of one neuron's output to another neuron's input. By 

changing the connection weights during the training procedure a very 

complex, possibly non-linear, relationship between the network inputs and 

the output can be established. 

Input
layer βJK

β00

αj α0

1

αJ

dρ2

ρ0

ρ1

ρ3

Hidden
layer

Output
layer

 

Figure 6.1 Schematic representation of a three layer ANN 

The output of this network d can be written as: 
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where ρj denotes the feature vector parameters with 1
0
=ρ , J is the 

number of inputs, K is the number of hidden neurons, tanh is the non-linear 

activation function hyperbolic tangent, βjk are the weights between inputs 

and hidden layer and αk are the weights between hidden and output layers. 

The neural network training procedure is based on adjusting the weight 

parameters αk and βjk. The neural network is considered to be trained when 

it gives small errors when applied on the training set of data but also 

responds properly to a new testing set not used in the training procedure. 

When a network is able to perform both on testing and training sets of data, 

we say that the network generalizes well and the optimal detection function 

d{s[n]} is established. 
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7 Applications and algorithms 

7.1 Wavelet based TEOAE denoising and detection 

It is not easy to give the definition of genuine TEOAE response. The large 

intersubject variability in the shapes of TEAOE responses do not allow to set 

fixed rules for detection and classification of TEOAE’s. For example, we can 

see in Figure 7.1 typical TEOAE responses from 4 subjects having similar 

MHL about 0dB in 0.5-6.4 kHz frequency band. If we try to compare them 

sample by sample, we will not find any similarities among them: at the same 

time instances different records have very different values. Although the 

TEOAE responses, like fingerprints, can be very stable during long time from 

the same ear, but they can be completely different even from the same 

subject’s equally hearing left and right ears. Thus global features that 

capture similarities in TEOAE responses from similar hearing ears should be 

extracted. 

 

Figure 7.1 Examples of TEOAE subaveraged responses from 4 subjects, 

having the same MHL ≈ 0dB. Here r indicates cross correlation value between 
subaverages of the response 

We refer to D. Kemp, the first who detected TEOAE in 1978 [47] for 

definition of the TEOAE. However, he gives very common definition: “release 

or return of acoustic energy from the cochlea into the ear canal, in response 

to an acoustic transient”. It was already said that TEOAE responses 

distinguish themselves by the signal shape stability for the same subject 

during the long time. Thus the most popular criterion for TEOAE detection is 

the cross correlation coefficient between the two subaverages (we remind 
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here that TEOAE response is recorded into two accumulators). If the 

calculated cross correlation coefficient between the two subaverages exceeds 

some predetermined threshold, it is considered as an evidence of the 

presence of deterministic activity in the recorded signal and a conclusion 

about detected TEOAE is made. The TEOAE responses shown in Figure 7.1 

can be clearly distinguished with a high cross correlation value, but this is 

not always the case. The calculated cross correlation value depends on both 

initial signal-to-noise ratio and available averaging time (i.e. number of 

sweeps in the average). Long averaging time is often difficult to maintain in 

the clinical practice, especially in child investigations. In order to reduce 

further the influence of the remaining noise in the averaged signal, 

additional measures can be considered, which use a priori information on 

TEOAE. Many investigations [13,10,20] have shown that TEOAE exhibit 

frequency dependant latency: where higher frequencies have shorter post-

stimulus time while lower frequencies have longer. This particular feature of 

TEOAE can also be observed in the example of TEOAE subaverages shown in 

Figure 7.1, where oscillations of higher frequency, starting 3 ms post-

stimulus, precede oscillations with lower frequency. These observations led 

us to the assumptions that taking into account such time- frequency specific 

structure of TEOAE can increase the signal-to-noise ratio and detection 

performance. 

As an application of the investigated signal denoising and feature 

extraction methods here we present the results of denoising the real TEOAE 

signals and automatic TEOAE detection method. The method was 

investigated on large database of real TEOAE signals. 

7.2 Experimental data 

A database consisting of 5213 TEOAE records was collected during the 

health screening test "Genetic and environmental study of hearing loss in 

Nord-Trondelag county" Norway [24]. The ILO92 Otodynamics analyzer was 

used for recording of TEOAE data and air conduction pure tone audiograms 

were recorded using Interacoustics AD25 automatic audiometers. The 

audiometric criterion used to separate normal hearing from hearing impaired 

subjects was chosen as 30 dB of mean hearing level as obtained at the 

frequencies 0.5, 1, 2 and 4 kHz (MHL). Based on that separation level a total 

of 4404 subjects were classified as having normal hearing while the 

remaining 809 were classified as having impaired hearing. 
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7.3 Wavelet based TEOAE denoising 

7.3.1 Algorithms 

The denoising algorithms described in Sections 5.2.3 and 5.3 were 

applied to all the TEOAE records from the database to estimate the efficiency 

of proposed methods and to compare them with the methods known from 

the literature. 

7.3.2 Other methods for signal-to-noise ration improvement in TEOAE 
records 

Various methods have been presented with the aim to improve the SNR 

and detection performance of TEOAE, e.g. by time windowing [98] of the 

subaveraged signals or by bandpass filtering [34]. 

Optimal time windowing. Time windowing technique is based on the 

assumption that a shorter analysis time window increases the SNR. The best 

results were obtained by using the window 2.5-9 ms [98]. 

Optimal bandpass filtering. In study [34] linear bandpass filtering with 

four different octave bandpass filters with center frequencies: 500 Hz, 

1000 Hz, 2000 Hz and 4000 Hz were considered to improve SNR. The filter 

with central frequency of 4000 Hz gave the best results. 

Before processing. The cross correlation coefficient between two 

unprocessed subaverages, or "wave reproducibility'", is used as a base for 

comparisons. This parameter is used for TEOAE detection in conventional 

clinical TEOAE recording device ILO92 manufactured by Otodynamics Ltd. 

7.3.3 TEOAE denoising results with different methods 

The example of TEOAE record before any processing, after time 

windowing, after linear bandpass filtering, after wavelet coefficient shrinkage 

based denoising and after wavelet coefficient selection based time- frequency 

filtering is shown in Figure 7.2. The cross correlation values reflect the 

improvement of the quality of this signal example. Since the mean hearing 

level for this particular subject was 10 dB, otoacoustic emissions were 

expected to be present. Figure 7.2 shows that no emission is present in the 

unprocessed signal (ρ=64 %) as the criterion for the presence of TEOAE is 

considered ρ=70 %. All the filtering methods improved ρ in this case and 
indicated TEOAE signal being present in this record. 
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Figure 7.2 The examples of the TEOAE subaverages: a) before any 
processing, b) after bandpass filtering, c) after time windowing, d) after 

wavelet coefficient shrinkage based denoising, e) after wavelet coefficient 
selection based time- frequency filtering 

It is important to know the influence of the signal denoising procedures 

on all the TEOAE records in the database. How differently the different 

records with different initial signal to noise ratio were effected by the 

denoising procedures? The cross correlation values of unprocessed database, 

sorted in ascending order, were chosen as a base for comparison with the 

data after denoising. Overall influence of all the denoising methods on all the 

signals in the database is shown in Figure 7.3. In the figure the data, cross 

correlation values, representing records before denoising are shown as thick 

line and the dots correspond to the same sorted subjects after influence of 

denoising. It can be observed that all the recordings were affected by the 

denoising using time windowing, bandpass filtering, both wavelet based 

methods and have spread of cross correlation values in both sides of the 

baseline. This means that, in addition, to increased cross correlation values 

we get decreased values. The spread of cross correlation values after time 

windowing and bandpass filtering is much higher than using wavelet 

coefficient shrinkage or coefficient selection based methods. This indicates 

less dramatic influence of the last two methods to the signals. Another good 

feature of the last two methods is mostly positive direction of the affect to the 

records that had cross correlation above some 50% before processing. The 
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records that had before processing the cross correlation value below 40% in 

the average were unchanged. It is very important result as it shows that the 

denoising procedure will not produce false negatives by discovering TEOAE, 

where it should not be. 

 

Figure 7.3 Distribution of cross correlation values computed before and 
after denoising using: a) time windowing, b), bandpass filtering, c) wavelet 
coefficient shrinkage, d) wavelet coefficient selection. The line represents the 

sorted in ascending order cross correlation values before denoising. The points 
represent the same signals in the database, but after denoising with different 

methods. Here n is the number of the record in the database. 

Figure 7.4 gives more insight about the different effect of the denoising 

methods to the similar records representing various cross correlation 

intervals. It shows the influence of different SNR improvement techniques in 

six cross correlation ranges. The recordings were clustered by their cross 

correlation value into six groups before application of the processing 

techniques. Then all the techniques were applied to the recordings in the 

groups and mean cross correlation values calculated. It can be seen that all 

the methods, except bandpass filtering, increased the cross correlations in 
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all the selected intervals. The records from the intervals (40-50)%, (50-60)% 

and (60-70)% experienced the highest positive influence from both wavelet 

based methods, while records from the interval "<30%" are almost 

unaffected. Time windowing influenced the records from the all intervals 

significantly to the positive direction, too. However, it significantly affected 

the records from the interval "<30%", where with high probability only noise 

resides. Thus, it is negative feature, since errors (false negatives) can be 

produced in signal recognition tasks. 

 

Figure 7.4 Comparison of various SNR improvement techniques in 
different cross correlation ranges  

7.3.4 Discussion 

TEOAE signal measurement promises to become a new tool in objective, 

quick and reliable assessment of the functionality of inner ear. However, 

many problems have to be solved until TEOAE measurement based tests of 

hearing will gain the popularity among the clinicians. One of the problems is 

a noise reduction or enhancement of the acquired TEOAE signal for reliable 

detection. 

We have shown that TEOAE signals could be enhanced by using a 

knowledge about the time- frequency contents of this kind of signals. The 

motivation for this approach was earlier investigations made by Whitehead 
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et.al. [98] and Gorga et.al. [34], where time windowing or bandpass filtering 

were used. In contrast, we have tried to use both dimensions: time and 

frequency, in signal enhancement. We employed discrete wavelet transform 

for mapping the signal into joined time-frequency representation. Discrete 

wavelet transform decomposes the signal into octave frequency bands with 

increasing time resolution when frequency increases. This property agrees 

with time- frequency structure of TEOAE signals, where high frequency 

components have shorter duration than low frequency components. Other 

authors: Wit et. al. [100] and Tognola et.al. [92], have used continuous 

wavelet transform (CWT) for TEOAE analysis. We admit that CWT allows 

more flexibility in choosing frequency bands and time resolutions, however it 

is highly redundant and computationally expensive. Wavelet pocket analysis 

[13] is worth considering. It is an alternative to CWT having some degree of 

flexibility in time- frequency plane division and fast analysis algorithms. 

The analysis of enhancement of TEOAE signals in database showed 

wavelet based algorithm works. These signals, which had very low cross 

correlation value (<30 %) before processing, were almost unaffected by the 

algorithm i.e. TEOAE was not "found" where it was not present. This is 

correct, because it is very high probability that these records were recorded 

from impaired ears and contain no TEAOE activity i.e. only noise was 

recorded. The group of signals, which had cross correlation value in the 

range 40- 70 %, experienced the highest influence (increase of cross 

correlation value in the average) by all the signal enhancement methods. 

Thus, many previously indeterminate cases, where cross correlation values 

were just below the decision threshold of 70 %, reached the threshold and 

can be diagnosed as normal hearing. However, these signals may represent 

either TEOAE signals, which are contaminated by high amplitude subject 

generated and environmental noises, or pure noise, which has accidentally 

achieved high cross correlation value. The question arises: which signals 

were enhanced more in this group? There could be two possible answers to 

this question: a) just signals having TEOAE activity were enhanced, b) both 

types of signals with TEOAE activity and without it were enhanced equally. 

The first possibility is desirable as the number of subjects that were miss 

classified as hearing impaired would decrease, while the second would bring 

highly undesirable consequences: hearing impaired subjects might be 

diagnosed as normal hearing. We will try to answer the former question in 

the next section where the detection of TEOAE or classification of subjects 

into normal hearing and hearing impaired will be considered. 
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7.4 TEOAE feature extraction and detection 

As it was written in section 7.1, the features that take into account 

specific time-frequency properties of TEAOE can be more useful than, for 

example, gross features like energy or maximum amplitude of the signals. 

Thus, feature extraction procedure, which was described in section 6 was 

used in our TEOAE feature extraction problem. 

Choosing wavelet coefficients from decomposition level j is equivalent to 

bandpass filtering of the signal, while choosing wavelet coefficients with 

indexes from k to l from the given decomposition level is equivalent to time 

windowing. The fast orthogonal discrete wavelet transform decomposes the 

signal by definition into octave frequency bands, which cannot be chosen 

independently. The time windowing in wavelet domain can, however, be 

accomplished with no restriction in the choice of the indexes k and l. 

The choice of time indexes k and l in our TEOAE specific feature 

extraction problem was based on the data from the section 5.3, where the 

average location of the bigger part of the TEOAE energy in the selected levels 

was determined. Our data agrees with data from a study of Janušauskas et. 

al. [40], where the average time locations of TEOAE in a database of normal 

hearing subjects was studied by the use of an ensemble correlation 

technique. The time windowing was thus carried out directly in wavelet 

domain by selecting or, equivalently, by applying the rectangular windows to 

the wavelet coefficients from the given level of decomposition (as seen in 

Figure 7.5). The features, cross correlation coefficients between two 

windowed frequency components of two TEOAE subaverages A and B in the 

wavelet domain, are then obtained as: 
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where wA,j and wB,j  are wavelet coefficients of subaverages A and B from 

level j and where k and l are indexes of the first and last coefficient in the 

respective window. 

An example of TEOAE subaverages transformed into wavelet domain is 

shown in the Figure 7.5. It can be seen that the highest similarity between 

the wavelet coefficients and equivalently the highest cross correlation 

appears in rectangular windows as defined by Janušauskas et. al. The 

calculated cross correlation values between the TEAOE subaverages with 
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and without windows, as indicated in the Figure 7.5, exemplify the 

improvement achieved by windowing. 

 

Figure 7.5 Three levels of wavelet decomposition of two subaverages and 
corresponding time windows. The two subaverages A and B are shown as 
open and filled circles, respectively. Solid lines indicate corresponding time 

windows ( k is time index ). The cross correlation values ρj with and without 
windows (in parentheses) are indicated. 

The three cross correlation coefficients ρj, which represent each recorded 
signal consisting of two subaverages with 512 time samples each are in the 

following used as TEOAE features. 

7.4.1 Feature average based detector 

In order to establish TEAOE detection criterion, features extracted from 

recorded signals should be combined in some way to form the detection 

function d{s[n]}. The final decision, about the presence of TEAOE in the 

response can be made by setting the threshold on the value of detection 

function. Two ways to combine the features in order to form d{s[n]} for 

TEAOE detection were proposed. 

The first detection function was constructed as simple feature average. 

This assumes that extracted features, time and frequency limited cross 

correlation coefficients, have equal weights in forming discriminatory 

function to detect TEOAE:  
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In addition, we associate the presence of TEOAE with normal hearing 

(mean hearing threshold less than 30 dB). Thus, separation of subjects 

belonging to normal hearing or hearing impaired is made according to this 

rule: 
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),,(d <
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where NH represents the normal hearing subjects, IH the impaired 

hearing subjects, T is the threshold value. 

7.4.2 Neural network based detector 

It is well known that TEOE generation is closely related with non-

linearities which are present in the cochlea and which are responsible for the 

high dynamic range of the hearing system. Thus, it would be natural to 

think about more complex relationship than linear in associating hearing 

level and time-frequency features extracted from TEOAE. Artificial neural 

networks are used in applications, where predetermined analytical 

relationships are difficult to establish because of the lack of knowledge about 

the phenomenological background, but where rich empirical datasets are 

available for teaching of the network of the desired relationship. Thus, we 

were inspired by our large database of TEOAE records to construct the 

second TEOAE detection and subject separation parameter with the help of 

artificial neural network. 

The multilayer perceptron was chosen due to its ability to model both 

simple and very complex functional relationships [14]. We restricted, 

however, ourselves to consider artificial neural network having only one 

hidden layer and only hyperbolic tangent activation functions. The Bayesian 

technique of regularization proposed by D. Foresee and F. Hagan [29] to 

improve generalization was used in training procedure. In addition, this 

regularization procedure gives the number of weights in the neural network 

that are effectively used in reducing the error function. This feature can be 

employed to choose optimal number of network neurons. We can simply add 

more neurons and retrain. If the larger network has the same final effectively 

used number of parameters, then the smaller network was large enough. In 

our case, the final network had 3 inputs, 6 neurons in the hidden layer and 
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one neuron in the output layer. The weights were adjusted using Levenberg- 

Marquardt algorithm during the training procedure. This algorithm has the 

most rapid convergence properties for networks with moderate 

complexity [37]. 

The network was trained using supervised learning with a training set of 

inputs and targets. This procedure is described by: 
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where d(ρ1, ρ2, ρ3) is the detection function, which has to be determined 

by the ANN to minimize the mapping error of the features ρ1, ρ2, ρ3  to the 
targets, the binary values 1 and –1. These binary values represent the 

subjects having audiometric MHL in frequency range 500-4000 Hz less than 

30 dB and more than 30 dB, respectively. Thus, normal hearing subjects are 

coded by “1” and hearing impaired subjects by “-1”. 

The preliminary attempts of the neural network training showed that the 

network generalized well if the training set consisted of approximately equal 

number of hearing impaired and normal hearing cases. The training set was 

therefore made of a database representing 385 hearing impaired and 400 

normal hearing subjects. The testing set contained all the subjects: 809 

hearing impaired and 4404 normal hearing. 

The separation of subjects belonging to one of the groups is made 

according to the rule in ( 7.3 ). 

7.4.3 Statistical decision theory for the comparison of the detectors 

The principles of statistical decision theory [67] were used for the 

comparison of the different detectors. The ROC curves (introduced in 

section 3.3) were used to assess the ability of the detectors to detect TEOAE 

signals. 

In TEOAE detection applications it is important to have high sensitivity of 

the detector to identify the main part of the hearing impaired subjects. The 

comparison of the performance of the different detectors was therefore made 

by keeping the sensitivity at a fixed level of 90 % and comparing the 

resulting specificity. 
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7.4.4 Subject separation results when separation parameter is an 
average of the features extracted from TEOAE 

In order to validate the increased complexity of the new denoising 

methods, comparison with conventional TEOAE detection techniques, which 

were described in section 7.3.2 as noise reduction techniques, was made. 

The detection function d(ρi) was: the average of the three cross correlation 
coefficients in case of wavelet based time- frequency feature extraction 

"Time- frequency feat." method and the simple cross correlation coefficient in 

the remaining methods. 

Figure 7.6 shows fife ROC curves corresponding to different methods of 

TEOAE signal processing and feature extraction. 

 

Figure 7.6 ROC curves before any processing of TEAOE signals ("Before 
process."), after windowing ("Opt. time wind."), after linear bandpass filtering 
("Opt. bandpass filt."), after non-linear wavelet based filtering ("Wavelet coef. 
shrink.") and after wavelet based time- frequency feature extraction ("Time- 

frequency feat.") 

It was shown that wavelet methods and especially wavelet based time- 

frequency feature extraction method outperform the other methods by 

achieving a better specificity at all investigated sensitivity value. The 

specificity values at a sensitivity of 90 % are presented in Table 7.1 
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Table 7.1 The specificity of different TEOAE detection methods at 90% of 
sensitivity 

Method Used signal 
features 

Specificity±std, 

(Sensitivity=90%) 

Before processing ρ [68,03±0,70] % 

Time windowing 

(∆t=(2.5-12,5)ms). 
ρ [72,31±0,67] % 

Bandpass.filt.  

(∆f=(2-4)kHz)  
ρ [78,12±0,62] % 

Wavelet coef. 
shrinkage 

ρ [79,51±0,61] % 

Time frequency 
features 

ρ1, ρ2, ρ3 [82,71±0,57] % 

 

In order to provide further insight into the above results, the sensitivity 

and the specificity are presented separately as the decision threshold 

functions1 in Figure 7.7. Again, it is obvious that time windowing 

corresponds to a less favourable sensitivity and specificity than do the 

wavelet methods. Bandpass filtering has a better sensitivity but a worse 

specificity than the other methods; the sensitivity characteristic is explained 

by lower noise contamination in the higher frequency region which reduces 

the likelihood of high cross correlation values due to correlated noise 

artefacts. 

                                                 
1 A sensitivity curve, which is less steep indicates that, for a certain value of the 

separation parameter, a larger number of cases are mistaken as true OAE as a consequence of 
residual stimuli or correlated noise artifacts. A specificity curve, which is less steep indicates 
a larger number of cases where noise is insufficiently reduced or where an OAE was not 
present because of methodological problems. 
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Figure 7.7. Sensitivity and specificity versus threshold. 

7.4.5 Comparison of linear and non-linear TEOAE detectors in hearing 
screening 

In order to check if more complex detector than linear can perform better 

in separation normal hearing subjects from those with hearing loss we 

compared two detectors. The first used simple average of features as 

separation parameter and the second neural network, which can combine 

extracted features, in such a way as the best separation performance could 

be achieved. Both classifiers, the linear and the non-linear, transformed a 

vector of three TEOAE features, representing one subject, into one single 

output. The results of both classifiers are shown in Figure 7.8 and Figure 

7.9. Normal hearing subjects are grouped in the left part of the figures (4404 

subjects), while hearing impaired are grouped in the right part (809 

subjects). The decision threshold (dashed horizontal line) for separation of 

hearing impaired from normal hearings is selected such that sensitivity of 

90 % is obtained. It can be observed that most of normal hearing subjects 

are above the decision threshold. They constitute the true negatives. The 

normal hearings below the decision threshold are the false positives. 

Similarly, hearing impaired subjects (right side of the graphs) below the 

threshold are true positives and above the threshold are the false negatives. 

It can be concluded that the linear approach distributes subjects more 

evenly in comparison with ANN, which seems to separate most of subjects in 

two distant regions. Although, this looks like an advantage of the non-linear 
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approach versus linear, the improvement expressed as a specificity value is a 

minor showing a difference between the methods of 82.7 % versus 84.1 % for 

a specificity at a sensitivity of 90 %. The numbers of correctly and not 

correctly identified subjects and the calculated 95 % confidence intervals of 

specificity at 90 % of sensitivity for both types of classifiers are presented in 

Table 7.2. 

 

Figure 7.8 Separation of normal hearing and hearing impaired subjects 

using a linear classifier. Here ρ is the average of the features- ρ1, ρ2 and ρ3 

 

Figure 7.9 Separation of normal hearing and hearing impaired subjects 
using ANN separation 
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A comparison of the numbers of false negatives and false positives shows 

close similarity between the classifiers with minor improvement for the non-

linear classifier, which gives less number of false positives (Table 7.2). 

Table 7.2 The separation results at 90% of sensitivity 

 NT TP FN FP Specificity 
and std. 

Confidence 
interval 
(0.05%) 

Linear 
classif. 

3644 727 82 760 (82.7±0.57) % [81.6– 83.8]% 

Non-linear 
classif. 

3704 726 83 700 (84.1±0.55) % [83- 85.2]% 

 

It may be assumed that larger differences would appear at other levels of 

sensitivity. But this is not the case, as can be seen in the ROC curves in 

Figure 7.10. The curves indicate that the separation methods are very 

similar, though, non-linear approach exceeds linear at several regions. 

 

Figure 7.10 ROC curves for both methods  

Although the resulting difference between the two methods was small, we 

could prove that the difference is statistically significant by applying a 

hypothesis test with the null hypothesis defined, as "no differences among 

the results from the classifiers". After making the assumption about normal 
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distribution of the results, the hypothesis test showed that we could reject 

the null hypothesis, as the evaluated P  value was 0.0002. 

The dependence of separation accuracy in terms of sensitivity and 

specificity curves as the functions of decision threshold is shown in Figure 

7.11. Before comparison, outputs of the neural network were transformed 

into the same range as averaged cross correlation values: from 0 to 100 %. 

The curves show that to achieve the same sensitivity of 90 % different 

decision thresholds should be applied: 70 % for linear method and 53 % for 

non-linear. The shapes of the curves from respective method differ 

considerably for a given decision threshold value; the difference is 

particularly large between the sensitivity curves. This is due to 

transformation of distribution of hearing impaired subjects by the non-linear 

classifier as it shown in Figure 7.8 and Figure 7.9. 

 

Figure 7.11 Sensitivity and specificity of linear and non-linear classifiers 
as the functions of the separation threshold. 

7.4.6 Discussion  

In this section we compared different signal processing methods to 

increase accuracy of the separation hearing impaired and normal hearing 

subjects in the database using TEOAE records. The question, which was left 

from the section 7.3 can be answered. The question was: which signals were 

enhanced more in the group of signals that have cross correlation value just 

below the threshold? There were two possible answers to this question: a) 

just signals having TEOAE activity were enhanced, b) both types of signals 

with TEOAE activity and without it were enhanced equally. Now we can 
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answer from Table 7.1 that signals having TEOAE activity were enhanced 

more, since the accuracy of subject separation was improved. 

Further, we compared two classifiers to separate hearing impaired and 

normal hearing subjects, using TEOAE based features. The first classifier 

was constituted by the linear average of the set of features, while the second 

one- based on neural network, which could account for a more complex 

relationship, possibly non-linear, among the set of features as extracted from 

TEOAE and the mean hearing level in the frequency range 0.5-4 kHz. Based 

on the facts about non-linear TEOAE generation mechanism in the cochlea 

we expect a substantial improvement in subject separation using more 

complex non-linear classifier as compared to a linear. The results were, 

however, very similar with a small but still statistically significant advantage 

of the neural network based classifier. 

A possible reason why the neural network did not decrease the number of 

errors might be due to the fact that the database includes a certain amount 

of errors caused by deficient measurements of TEOAE or audiograms. The 

outliers may prevent the neural network from the establishment of the right 

separation function during the training procedure. We have manually 

inspected some cases with erroneous behaviour: hearing impaired subjects 

with a TEAOE like response (false negatives) and normal hearing subjects 

with a response in which TEOAE cannot be detected (false positives). There 

are several reasons that may contribute to false positives: a) poor fitting of 

the probe into the ear canal (loose seal to the ear canal reduces stimulus 

pressure and TEOAE amplitudes), b) a blockage of the microphone or 

speaker ports against the ear canal wall or by ear wax, which prevents the 

recording of the TEOAE response, c) strong ambient noise during the session 

of recording, d) conductive hearing loss in middle ear from 10 to 20 dB can 

make emission undetectable. One example of a false positive case is shown 

in Figure 7.12, where the subject has MHL=4 dB indicating the potential to 

generate TEAOE and where the ρ value equal to 40 % indicates mainly the 

random activity. The possible reasons for low ρ value might be a) somewhat 

low stimulus pressure –72 dB (scaled stimulus is shown in the left-hand side 

of the figures), while the average pressure is 80 dB in the database and b) 

strong ambient noise. 
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Figure 7.12 The example of TEOAE response in case of false positive 
subject 

False negatives, may also appear due to technical failures: a) bad fitting of 

the probe into the ear canal may cause prolonged stimulus artefact, which 

will give increased cross correlation values, b) noise from instrumentation 

which is synchronized with stimulus may be detected as the TEOAE. 
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Figure 7.13 An example of prolonged artifact 

Figure 7.13 shows an example representing a false negative case, which 

may have increased cross correlation value due to prolonged stimulus 

artefact. This subject is classified as normal hearing although the MHL is 

39 dB. 

It is, however, sometimes difficult to find a simple explanation for the 

achieved error. Figure 7.14 shows a TEOAE response from a subject, which 

is hearing impaired according to audiometric data with MHL 53 dB. 
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Figure 7.14 The example of false negative case 

This response looks like a response from a completely normal hearing 

subject, where: high, middle and low frequencies easily can be distinguished 

in the response. One possible explanation for this example is that it may be 

a retrocochlear hearing loss, which means that the hearing loss is caused by 

dysfunction the auditory pathway after the cochlea. Such a condition cannot 

be detected by a TEOAE test, since these cases have a normal cochlea 

producing a normal TEOAE. Another possible explanation is error in the 

measurement of the audiogram. 
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8 Conclusions 

The following conclusions can be derived from this study: 

1. Signal denoising in the transform domain can be more effective than 

in the original time domain. We showed that the energy of the non-

stationary signal is concentrated better in discrete wavelet domain 

than in discrete Fourier domain or time domain. 

2. We found that among the families of finite in time and orthogonal 

wavelets: Daubechies2-20, Coiflet1-5, Symmlet2-10, the best 

performance in terms of energy concentration showed Symmlet 8 

wavelet. 

3. We proposed two different algorithms to enhance the signal in 

wavelet domain. One of them is based on wavelet coefficients 

thresholding and we proposed the method to estimate the threshold, 

which maximizes the quality of the signal. Other algorithm uses 

knowledge about average location of signal components in wavelet 

domain for relevant wavelet coefficients selection. These methods 

were compared with other wavelet based denoising methods in the 

problem of TEOAE signal enhancement. The results showed that 

method based on wavelet coefficient selection is the best among 

compared methods and could reduce averaging time needed to 

achieve the signal of sufficient quality. The quality of enhanced 

signal averaged over 16 realizations was approximately equal to 

unprocessed signal, which was averaged over 60 realizations.  

4. Signal denoising method based on wavelet coefficient selection was 

validated in the application of denoising 5213 TEAOE signals from 

large database. The results showed that processing mainly affects 

these signals, which have average quality in the beginning. This is an 

important property as no clean signal is produced from noise only. 

5. In the problem of signal detection, we proposed the efficient 

procedure to extract features from the non-stationary signal. We 

showed that calculation of band limited product of two signals in 

time is equivalent to the calculation directly in wavelet domain. 

Furthermore, windowing in time can be replaced with selection of 

relevant wavelet coefficients. Thus, calculations of cross correlation 

coefficients between time and frequency limited intervals of two 

signals can be accomplished very efficiently in wavelet domain. 
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6. The algorithm for automatic separation of hearing impaired and 

normal hearing subjects using the features extracted from TEOAE 

signals was proposed and tested on the database of 5213 signals. By 

using proposed features, the specificity of separation was increased 

by 10-15 % in comparison with conventional features. 

7. We compared two classifiers in separation of hearing impaired and 

normal hearing subjects, using TEOAE based features. The first 

classifier was constituted by the linear average of the set of features. 

The second classifier was based on neural network, which could 

account for a more complex relationship, possibly non-linear, among 

the set of features as extracted from TEOAE and the mean hearing 

level in the frequency range 0.5-4kHz. We expected, based on the 

facts about non-linear TEOAE generation mechanism in the cochlea, 

a substantial improvement in subject separation using more complex 

non-linear classifier as compared to a linear. The results were, 

however, very similar with a small but still statistically significant 

advantage of the neural network based classifier. 
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Appendix 

An attempt to simulate the TEOAE emitting ear and TEOAE acquisition 

hardware was made in this study. The aim was to build the systems, which 

generate synthetic TEAOE signal showing resemblance with real TEAOE 

signal and to understand what kind of transformations experiences the 

signal in different places of the modelled systems. 
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1 Simulation of the system “Kemp’s 
hearing faculty tester and TEOAE 
emitting auditory periphery” 

Modeling of auditory periphery, composed of external, middle, and inner 

ear (cochlea), has a long history and it aims to explain complex processes 

involved in hearing. The first model of hearing was proposed by Helmholtz in 

1863. He suggested a parallel bank of resonators as the mechanism for 

selectivity in frequency. He directed to basilar membrane as the bank of 

resonant elements. Many models have contributed to the modern 

understanding of cochlear mechanics, [2], [45], [46], [69], [70], [84], [95]. 

Next to the frequency selectivity, cochlea distinguishes as highly non-linear 

"device". Somehow, the cochlea compresses the large dynamic range of 

acoustic pressure variations that enter the much smaller dynamic range that 

can be processed by the sensory hair cells that detect these signals in the 

cochlea. The dynamic range of the hair cells (between thermal noise and 

signal saturation) is about 1000, whereas the range of audible sound 

pressure levels is about 100000. The cochlea is a non-linear signal 

processing device that, in addition to separating frequency components, is 

able to compress the dynamic range of input signals without significant 

degradation of the signal content. Thus non-linear saturating element 

should be present in more advanced model of the inner ear. It is believed 

now that outer hair cells provide the compressing mechanism of incoming 

audio signal. Unlike the inner hair cells, which act as sensory transducers 

involved in the transmission of information to the brain, the outer hair cells 

act as tiny muscles, adding energy to the traveling wave. 

Cochlea is often modeled as a filter bank in a first approximation. Such 

filter bank is based on critical bands. It has been experimentally measured 

that the critical bandwidth increases when the center frequency is raised as 

it is exemplified in Figure 1.1 and Table 1.1.  

 

Figure 1.1 Critical bands of the auditory system. 
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Table 1.1 Critical bands, which are of constant bandwidth at low 
frequencies (below 500Hz) and of constant relative bandwidth at high 

frequencies 

Band 
number 

Lower edge 
(Hz) 

Center 
(Hz) 

Upper edge 
(Hz) 

BW 
(Hz) 

1 0 50 100 100 

2 100 150 200 100 

3 200 250 300 100 

4 300 350 400 100 

5 400 450 510 100 

6 510 570 630 120 

7 630 700 770 140 

8 770 840 920 150 

9 920 1000 1080 160 

10 1080 1170 1270 190 

11 1270 1370 1480 210 

12 1480 1600 1720 240 

13 1720 1850 2000 280 

14 2000 2150 2320 320 

15 2320 2500 2700 380 

16 2700 2900 3150 450 

17 3150 3400 3700 550 

18 3700 4000 4400 700 

19 4400 4800 5300 900 

20 5300 5800 6400 1100 

21 6400 7000 7700 1300 

22 7700 8500 9500 1800 

23 9500 10500 12000 2500 

24 12000 13500 15500 3500 

25 15500 19500   
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Patterson’s inner ear model [73] is based on an array of independent 

bandpass filters. The filters are organized from high frequencies at the base 

of the cochlea and to low frequencies at the apex. For bandpass filtering 

Peterson uses gamma-tone filters, that have impulse response: 

 ( )ϕππ += −− tfcosetA)t(g
c

btn 221  ( 1.1 ) 

where A- gain factor, n- integer order, b- bandwidth, ϕ- starting phase. 

The construction of impulse response of the gamma-tone filter is shown in 

Figure 1.2. 

 

Figure 1.2 The components of a gamma-tone filter impulse response. The 
gamma- envelope (top), sinusoidal tone, and their product- the gamma-tone 

(bottom). 

The efficient digital filter, which has all-pole gamma-tone impulse 

response, was introduced by Slaney [83]. The impulse invariance design 

technique was used to get the transfer function of the digital filter from the 

continuous space filter impulse response. The frequency response of gamma 

tone filterbank with 14 filters is shown in Figure 1.3. 
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Figure 1.3 Frequency responses of 14 cochlea channels 4th order gamma-
tone filters 

The resemblance of the TEOAE signal and the sum of the impulse 

responses of the individual filters in the gamma-tone filter bank were noticed 

in study [100]. It was suggested to use gamma-tone filter bank to synthesize 

artificial TEOAE signals. However such model does not account for non-

linearity of TEOAE: an amplitude of synthetic TEOAE grows linearly when 

amplitude of stimulus (short impulse) increases. In order to incorporate the 

feature of TEOAE to saturate when the stimulus increases, we suggest to use 

the hyperbolic tangent function in the output of each filter. The synthetic 

TEOAE signal can be written as: 

 [ ])t(htanh)t(s k

K

k

∑
=

=
1

 ( 1.2 ) 

where hk- impulse response of kth gamma-tone filter. 

Otoacoustic emissions are fascinating field of auditory and signal 

processing research since they were first recognized 20 years ago by Kemp. 

The USA patent “Hearing faculty testing” belongs to him and Peter Bray [48]. 

The device described in the patent is almost the only one type used by 

researchers audiologists and physicians in hearing screening for 15 years. It 

is of interest to study the properties of this device in conjunction with 

TEOAE emitting model of auditory periphery. 

New simulation techniques are now available. Among them are MATLAB 

and SIMULINK by MathWorks Inc. MATLAB has no substitute in complex 



 

93 

mathematical calculations, while SIMULINK- in interactive system modeling. 

In the meanwhile MATLAB is relatively more flexible than SIMULINK, since 

the program consists of raws of commands, also many already written 

macros are available for MATLAB. SIMULINK model consists of blocs that 

correspond to various actions in the system. This makes very easy to 

understand SIMULINK model. The blocks can be taken from arranged 

libraries. These libraries are not very rich so far, but flexibility can be 

attained by writing S functions, which is more work consuming than writing 

m functions for MATLAB. However, visual programming of models with 

SIMULINK was chosen in this study, because it is near real hardware with 

its possibility to change interactively various simulation parameters: the 

power of different additive noise sources, for example, instrumentation and 

of patient generated noise, the stimulus amplitude and etc. 

1.1 Kemp’s hearing faculty tester 

The block diagram of original device is presented in [48] and it is shown in 

Figure 1.4. 

Linearly balanced set of short impulses, clicks, is used as the stimuli to 

evoke TEOAE. TEOAE is evoked from a large part of the cochlea 

simultaneously also including all the byproducts of non-linearity and 

intermodulation. By using special “non-linear differential” stimulus block, 

which consists of four 100µs duration with 20ms periodicity and with the 

fourth impulse inverted and three times greater in amplitude, non- linear 

components of the response are kept while linear are eliminated. Thus, OAE 

response, which is very weak by comparison with stimulus, but highly non-

linear, remains in the subaverage of four responses while strong stimulus 

artifact disappears, because it is linear.  

The block “Stim.Gen.” in Figure 1.4 represents the generator of 

differential stimulus packets. Stimulus is applied to patient’s ear by the 

probe (miniature phone). In the same probe small microphone (block 

“Detect.”) is placed, which captures small TEOAE responses, primary 

elements (stimulus artifacts or echoes in the ear canal) and environmental 

noise. Four responses to stimuli packet are fed to algebraic summator “Sum” 

after amplification and filtering in the block “Detect”. The sum of four 

responses are applied to an interrogation unit “Interrogate” for comparison 

with a predetermined threshold and to a “Store” for possible reprocessing. 

Signals, which were passed through “Interrogate” are applied in alternating 

sequence under the control of the “Gate” to one or the other signal averagers 

“Average”. Here the synchronous averaging enhances the signal to noise 
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ratio of OAE waveform. Outputs from the averagers are applied as inputs to 

a correlator “Correlate”. The decision about presence of OAE is made then 

the achieved cross correlation factor is greater than 60%. Another alternative 

is to use signals collected in the “Store”, reprocess them, for example, by 

filtering, and compute cross correlation again. 

 

 

Figure 1.4 Block diagram of Kemp’s hearing faculty tester. Adopted from 
[43] 
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1.2 SIMULINK model of Kemp’s hearing faculty tester 

SIMULINK model of complete system- model of the auditory periphery and 

hearing tester is presented in Figure 1.5. 

 

Figure 1.5 SIMULINK model of complete system 

Non-linear differential stimulus is generated in the block “Stimulus”. Two 

impulse generators with different frequencies are used to form the sequences 

of four sound stimuli packets. By the help of block “Amplifier” it is possible 

to change interactively the amplitude of the stimulus during the simulation. 

An oscilloscope “Stimulus shape” shows continuously the stimulus. 

The train of stimulus clicks are applied to the model of the ear, which is 

described later. 

Tiny OAE like responses from the model of cochlea with strong responses 

of ear canal are summed with portion of low passed white noise to model the 

contamination of the signal with patient and instrumentation noise. The 

response can be monitored during the simulation with oscilloscope 

“Response” (see Figure 1.5). 

The inner content of subsystem "Kemp’s detector" is shown in Figure 1.6: 
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Figure 1.6 Inside of subsystem “Detector” 

It consists of 5 smaller subsystems: preprocessing block, where 

amplification and filtering of the signal takes place (Figure 1.7). Block “Sum” 

algebraically sums four successive responses to eliminate linear artifacts 

(Figure 1.8). Block “Store” stores all the responses obtained during 

simulation time for further analysis, “Gate” block splits responses into two 

alternating sequences for further comparison, “Averager” calculates the 

current average according to Figure 1.9. 

 

Figure 1.7 Preprocessing subsystem 

Summing circuit consists of the buffer, that can hold four responses, and 

four selectors that help to apply four responses to the summator at the same 

time. Gain factor 2 restores the amplitude of OAE component. The 

oscilloscope helps to monitor the outgoing response. 

 

Figure 1.8 Summing circuit 

Averager averages the current response with the current average. 
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Figure 1.9 Calculation of the current average 

Decision making block about presence of OAE is the subsystem “Results” 

in Figure 1.10. Here the subaverages of A and B can be monitored during 

simulation time and also spectrum analysis is possible. 

 

Figure 1.10 Subsystem “Results” 

The main parameter for decision making is cross correlation coefficient or 

reproducibility of subaverages of the responses A and B. It is thought that 

reproducibility greater than 60% indicates the presence of OAE. The block 

diagram of reproducibility calculation is showed in Figure 1.11. At first, the 

subaverages A and B are buffered. The lengths of buffers are 512 samples, 

which is equal to 20ms, then calculation of cross correlation takes place. 

New value of cross correlation coefficient appears every 20ms in the display 

and, in addition, the history of changes of this coefficient can be monitored 

in indicator- oscilloscope. 
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Figure 1.11 Calculation of cross correlation by means of SIMULINK 

1.3 SIMULINK model of TEOAE producing ear 

Our ear model consists of two blocks: 1) outer and middle ears, 2) 

cochlea. Sound entering the outer ear acts to the tympanic membrane. This 

pressure gain is maximal in the region between 2 and 5kHz [60]. The middle 

ear also has bandpass transfer function, but the peak is about 1kHz and has 

much steeper slope at low frequencies. Two bandpass transfer functions 

were combined to the one and modeled with bandpass filter, which has the 

cut off frequencies 800Hz and 6000Hz. 

 

Figure 1.12 The subsystem “The ear” in Figure 1.7 

Entering to the middle ear sound is transformed to the mechanical 

motion of middle ear oscicles, entering to the cochlea sound experiences 

another transformation to the fluid pressure wave traveling from the base to 

the apex. Fluid pressure wave travels with limited speed and stimulates 

inner and outer hair cells along the basilar membrane. Inner hair cells are 

responsible for transformation of pressure to electrical neuronal impulses, 

which go further to the brain. While outer hair cells generate mechanical 

feedback forces at a given place of basilar membrane to increase motion of 
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that place. The influence of outer hair cells is limited (non- linear), because 

the ability to become longer of these cells is limited- 10% of the length. It is 

believed that otoacoustic emissions are generated by the activity of outer 

hair cells. 

The traveling fluid pressure wave is modeled by the delay line with taps 

going to the models of “outer hair cells” (Figure 1.13). The delays of each 

section depends on the section's central frequency and are calculated 

according to [80]: 
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The central frequencies fc  were chosen from the range 600-6400Hz, where 

main energy of TEOAE is concentrated. 
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Figure 1.13 SIMULINK version of the cochlea 

The models of outer hair cells (Figure 1.14) consist of bandpass filters, 

which correspond to critical bands. Parameters for filters are taken from   

Table 1.1middle frequency region 600- 6000Hz. Saturating non-linearity is 

modeled with hyperbolic tangent function. 

 

Figure 1.14 SIMULINK version of outer hair cell 

TEOAE is generated as the response to the short impulse- click. In our 

SIMULINK model, TEOAE like response is obtained by summing all the 
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impulse responses of the models of outer hair cells- non-linear bandpass 

filters. 

1.4 Results of the system simulation 

Figure 1.15 shows the generated stimulus sequence. There are shown 

three differential packets, though, there is no restriction for simulation time. 
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 Figure 1.15 Stimulus sequence: three differential packets 

Figure 1.16 shows the response to differential stimulus package from 

model of TEOAE emitting ear. 
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Figure 1.16 Responses of outer and middle ears (large impulses) and of 
the cochlea (small amplitude long duration signal) to three positive and one 

negative clicks with portion of noise added 

Figure 1.17 shows the result of arithmetical summation of four responses 

in Figure 1.16. 
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Figure 1.17 Non-linear cochlear response with no noise added (linear 
artifacts completely removed) 

It was checked the influence of the noise to the mechanism of linear 

components removing. It was confirmed that noise is increased after 

application of “Summing circuit”. 
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Figure 1.18 Non-linear cochlear response with noise (linear artifact-
stimulus- completely removed) 

Our SIMULINK model is the first approximation of the outer ear, the 

middle ear, the cochlea and Kemp’s hearing faculty tester. Even at this stage 

of approximation, it is useful in the exploration the effects of non-linear 

differential stimulus block for reduction of linear artefacts in OAE response. 

 


