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List of terms and abbreviations

A An area under the receiver operating characteristic (ROC)
curve

ABS Average beat subtraction
AF Atrial fibrillation
Ambulatory monitoring A way of acquiring physiological data during normal daily

activities
APB Atrial premature beat
Brief AF Atrial fibrillation episode lasting less than 30 s
Cryptogenic stroke Stroke with unknown cause
E Root-mean-square (RMS) error between two signals
ECG Electrocardiogram
EMG Electromyogram
ESN Echo state network
f-waves Continuous atrial activity on the surface ECG during atrial

fibrillation
P-wave Atrial depolarization on the surface ECG
PPV Positive predictive value
PQRST complex A complex observed on the surface ECG corresponding to

depolarization of the atria, depolarization and repolarization
of the ventricles

PR interval Time interval from the sinus node activation to the atrioven-
tricular node activation

QRS complex A wave observed on the surface ECG representing depolar-
ization of the ventricles

QRST complex A wave observed on the surface ECG corresponding to de-
polarization and repolarization of the ventricles

r interval The time interval between two adjacent contractions of the
ventricles

S Classification ratio
Se Sensitivity
Sp Specificity
SR Sinus rhythm – normal rhythm of the heart
Systemic embolism Thrombus in blood vessels
T-wave Repolarization of the ventricles on the surface ECG
TQ interval Time interval from the end of repolarization of the ventricles

to the onset of adjacent depolarization of the ventricles
Transient ischemic attack A temporal event of neurologic dysfunction causing no per-

manent damage
VPB Ventricular premature beat
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1 INTRODUCTION

Relevance of the research
Atrial fibrillation (AF) has emerged as a worldwide cardiovascular epidemic affect-

ing more than 33 million individuals around the world (Chugh et al., 2014). However,
recent findings suggest that the actual prevalence of AF due to asymptomatic paroxysmal
episodes is considerably larger (Camm et al., 2010). Given that AF is primarily a disease
of older individuals, being much more common among ą 65 year-olds compared to the
general population, the prevalence is expected to increase up to 3-fold in the upcoming
decades due to the progressive aging of society (Colilla et al., 2013). Atrial fibrillation is
not considered as a life-threatening arrhythmia itself, however individuals with AF have an
increased incidence of various comorbidities, including a 5-fold increased risk of stroke,
3-fold increased risk of heart failure and 2-fold increase in general mortality rates (Jan-
uary et al., 2014). Atrial fibrillation is a progressive disease, with primary paroxysmal
AF episodes being usually brief and rarely occurring therefore treatment success highly
depends at what stage of arrhythmia development AF is detected.

While existing technologies for AF detection are suitable for detection of prolonged
and often chronic AF, there is an unsolved issue of reliable detection of self-terminating
and usually asymptomatic paroxysmal AF episodes. In addition, recent results from pro-
longed rhythm monitoring using implanted devices demonstrate an independent associa-
tion between brief AF episodes, lasting less than 30 s, and a future risk of stroke (Seet et
al., 2011; Flint et al., 2012). For this reason, the significance of brief episodes of parox-
ysmal AF is currently receiving considerable attention in clinical research (Kishore et al.,
2014; Favilla et al., 2015; Keach et al., 2015). It is hypothesized that brief episodes may
be coupled to the formation of atrial thrombus, and that brief episodes may be viewed as
biomarkers of prolonged episodes occurring outside of the monitoring period. Ultimately,
continuous long-term monitoring, lasting from several weeks to months, should be per-
formed so that all episodes of paroxysmal AF are detected, including the very brief ones,
and therefore, it is essential that reliable detection techniques are developed.

To this day, most methods for AF detection are based solely on the analysis of irreg-
ularity of ventricular contractions – a detector structure which is more prone to produce
false alarms, especially when an irregularity causing ectopic beats are present (Lake and
Moorman, 2011; Huang et al., 2011; Lee et al., 2013a; Zhou et al., 2014). Although
attempts have been made to mitigate the problem of false alarms by also involving infor-
mation of atrial electrical activity, the performance of such AF detectors have not turned
out to be better; mostly due to low amplitude of atrial electrical activity and misleading in-
fluence of noise (Couceiro et al., 2008; Babaeizadeh et al., 2009; Ladavich and Ghoraani,
2015). In connection with reduction of false positives, almost all AF detectors require at
least a 30 s episode for satisfactory AF detection.

In addition, it is desirable not only to detect all episodes of paroxysmal AF, but also
to provide quantitative information on atrial fibrillatory activity during each AF episode.
Recent studies show that atrial fibrillatory frequency has potential to be applied as a
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biomarker for prediction of therapeutic success and spontaneous AF behaviour (Platonov
et al., 2014). Thus, long-term monitoring of fibrillatory activity would allow better eval-
uation of temporal AF behaviour and define signal-based parameters that could provide
additional information on the efficacy of different treatment strategies.

Scientific-technological problem and working hypothesis
In this thesis, a clinically relevant scientific-technological problem of brief episode

paroxysmal AF detection in ambulatory monitoring applications is covered. To properly
tackle this problem, false alarm rate reduction and handling of noisy signals are crucial
issues that need to be solved. Hence, the hypothesis is formulated so that the performance
of brief episode paroxysmal AF detection can be improved by involving information pro-
vided by the atrial electrical activity, taking into account the prevailing noise level in the
analysed signal. The hypothesis is proved by comparing the obtained results with those
provided in the scientific literature, using both clinical and simulated data.

Research object
The research is based on the development and investigation of the algorithms for

automatic detection of brief episode paroxysmal AF in continuous ambulatory monitoring
applications.

The aim of the research
This doctoral thesis aims to develop and investigate a non-invasive system for auto-

matic detection and characterisation of brief episode paroxysmal atrial fibrillation.

The objectives of the research
1. To develop and investigate a low-complexity algorithm for detection of paroxysmal

atrial fibrillation in continuous monitoring devices.

2. To propose and investigate a reliable solution for the atrial electrical activity extrac-
tion during atrial fibrillation using a reduced set of electrocardiogram leads.

3. To propose and evaluate a signal processing approach for brief episode paroxysmal
atrial fibrillation detection in ambulatory electrocardiogram recordings.

4. To provide electrocardiogram lead configuration suitable for long-term ambulatory
monitoring of atrial fibrillation.

Scientific novelty
In this doctoral thesis, the recurrent echo state neural network is proposed as a so-

lution to the problem of ventricular electrical activity cancellation in electrocardiogram
signals using just two electrocardiogram leads. The proposed method is capable of deal-
ing with the presence of substantial variation in electrocardiogram beat morphology, thus
no dedicated algorithm is needed for the handling of ventricular premature beats. Other
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essential features of the proposed method are sample-by-sample data processing and pro-
cessing of short data segments.

Two high performing approaches for detection of paroxysmal AF have been pro-
posed. One of them was developed to analyse the time intervals between adjacent con-
tractions of the ventricles, hence various signals containing heart rhythm information (e.g.
electrocardiogram, photoplethysmogram, impedance plethysmogram) can be used as a
subject for analysis. On the other hand, the other AF detector was developed solely for
analysis of electrocardiogram signals. Since both heart rhythm and morphology infor-
mation is included into the AF detection process, such an AF detector is well suited for
detection of brief AF episodes. The aforementioned AF detectors can be used either sep-
arately or can be combined into a unified two-stage AF detector, where the heart rhythm
analysis based algorithm can also serve the purpose to flag potentially AF episodes.

A low-complexity structure of the heart rhythm analysing AF detector makes it pos-
sible to implement the algorithm in a low-energy device for use in long-term monitoring
applications, since only a few arithmetical operations are required for data processing. A
high performance is ensured by accounting for the most commonly encountered sources
of false alarms due to ectopic heart beats. Despite the simplicity of the algorithm, the re-
sulting performance is above that achieved by most AF detectors described in the scientific
literature.

The other approach to AF detection has covered a previously unsolved problem of
detection of brief episode paroxysmal AF, lasting just 5–30 s. It differs from the exist-
ing technologies for AF detection, since the proposed solution characterise both atrial
and ventricular activity, and accounts for the noise level in the electrocardiogram signal.
Therefore, a reliable AF detection is ensured even when noisy signals are applied for the
analysis.

Lastly, an electrocardiogram lead configuration (modified Lewis lead system) for
ambulatory monitoring of AF has been derived. Compared to conventional lead sys-
tems that are suitable for ambulatory monitoring, the proposed configuration involves
electrodes that are moved to areas of the thorax with less muscle, and therefore, offers
immunity to electromyographic noise and motion artefacts. Together with a high atrial-
to-ventricular activity ratio, the proposed lead system has potential to improve ambulatory
monitoring of AF and other atrial arrhythmias.

Practical significance

1. The developed solutions for ambulatory monitoring of paroxysmal AF can be used
in the following clinical applications:

(a) Due to low-complexity structure, heart rhythm analysis-based algorithm for
paroxysmal atrial fibrillation detection can be implemented in a low-power
device for prolonged monitoring applications.

(b) A method for atrial activity extraction using a minimal set of electrocardio-
gram leads is well suited for implementation in mobile health systems where
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monitoring of AF during extended time periods is of interest.

(c) A method for detection of brief episode paroxysmal atrial fibrillation has po-
tential to be used for AF detection in high risk patient groups, i.e., after cryp-
togenic ischemic stroke or acute myocardial infarction.

(d) A proposed modification of electrocardiogram lead system due to enhanced
component of atrial electrical activity and increased immunity to noise can
help to improve ambulatory monitoring of atrial arrhythmias.

2. The methods provided in this thesis have been developed in support of the following
projects:

(a) “Novel technical solutions and biomarkers in mobile patient monitoring” un-
der the Swedish Institute VISBY programme (No. 00923/2011), 2011–2013.

(b) “Intellectual wearable sensors system for human wellness monitoring” under
the European Social Fund (No. VP1-3.1-SMM-10-V-02-004), 2013–2015.

3. Currently the developed methods are being used in the following projects:

(a) “Personalized patient empowerment and shared decision support for cardiore-
nal disease and comorbidities – CARRE” funded by the European Commis-
sion Framework Programme 7 (No. 611140), 2013–2016. Application: parox-
ysmal AF detection in patients suffering from cardiorenal syndrome.

(b) “Automatic algorithms for atrial fibrillation risk prediction after acute myocar-
dial infarction” supported by the Research Council of Lithuania (No. MIP-
15391), 2015–2017. Application: brief episode paroxysmal AF detection in
patients after acute myocardial infarction.

Approval of the results
The doctoral thesis relies on 4 main papers, published in the international scientific

journals referred to in the Thomson Reuters Web of Science database, while in total the
results have been published in 11 scientific papers. The essential results have been pre-
sented in 9 conferences, including the worldwide recognized “41st International Congress
on Electrocardiology”, and the 39th and 40th conferences of “Computing in Cardiology”.

The research has been positively assessed both internationally and domestically:
nominated as a finalist at the Rosanna Degani Young Investigators’ Award competition at
the conference “Computing in Cardiology 2012”, received the 3rd place prize at the Young
Scientists Contest in the “41st International Congress on Electrocardiology” (2014), 1st

place award for the presentation at the section of “Cardiovascular Diseases” at the con-
ference “Science for Health 2014” (Lithuanian University of Health Sciences), 1st place
award (“Infobalt” scholarship) for the presentation at the conference “Interdisciplinary
Research in Physical and Technological Sciences” (2015, Lithuanian Academy of Sci-
ences), and a prize for the most attractive project for business (with co-authors) at the
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Young Scientists Exhibition “KTU Technorama 2015” (Kaunas University of Technol-
ogy).

The statements presented for defence
1. A high performance of paroxysmal atrial fibrillation detection can be ensured by

relying solely on heart rhythm analysis using a low-complexity structure of the al-
gorithm.

2. Echo state neural network based adaptive filter provides a reliable solution for fib-
rillatory activity extraction using a minimal set of electrocardiogram leads, both in
short data segments and the presence of physiological disturbances.

3. A combination of atrial and ventricular electrical activity characterizing parameters,
together with prevailing noise level offers a solution for reliable detection of brief
episode paroxysmal atrial fibrillation in ambulatory electrocardiogram recordings.

4. A derived electrocardiogram lead configuration provides a unified solution for en-
hanced atrial activity and reduced influence of electromyographic noise and motion
artefacts in ambulatory arrhythmia monitoring applications.

Structure of doctoral thesis
Thesis is organized as follows. Sections 2 and 3 are designated for the analysis of

relevant scientific literature with respect to clinical significance of AF and available tech-
nologies for AF detection. Section 4 presents algorithms developed both for fibrillatory
signal extraction and AF detection. In the same section, an electrocardiogram lead system
for ambulatory monitoring of AF is proposed. Section 5 describes the data used for per-
formance evaluation, and presents the results obtained for each of the proposed solutions.
The doctoral thesis is finished with general conclusions (Sec. 6).

The thesis consists of 140 pages, 54 figures, 14 tables and 269 references.
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2 CLINICAL SIGNIFICANCE OF ATRIAL FIBRILLATION

2.1 Medical background and clinical implications

2.1.1 Introduction to atrial fibrillation

Atrial fibrillation (AF) is an abnormal heart condition occurring when contraction
of the upper chambers (the atria) is driven by electrical activity of different areas of atrial
tissue (Fig. 2.1). Normally, atrial cells are depolarized by the sinus node approximately
once per second, however, during AF, the firing rate of atrial cells may markedly increase,
up to 300–600 times per minute. Since the lower part of the heart (the ventricles) is
continuously bombarded by the electrical impulses arriving from the atria, the ventricles
are affected as well. Fortunately, only a small portion of the atrial impulses reach the
ventricles – mainly due to the impulse filtering ability of the atrioventricular (AV) node,
which separates the electrical systems of the atria and the ventricles. Otherwise, such a
high ventricular rate would be fatal, eventually leading to sudden cardiac death.

a) b)

Sinus 
node

 AV node

Reentry 
circuits

 T
P

Q

R

S

f f f f f ff f ff fP PP

ECG ECG

f

Fig. 2.1. Electrophysiological activity in the atria, and a corresponding representation on the
surface ECG during a) a normal heart rhythm, b) atrial fibrillation

Depending on the properties of the AV node, abnormal interaction between the atria
and the AV node causes irregular activation of the ventricles, resulting in a rapid ventric-
ular contraction, typically reaching 90–150 contractions per minute. As a result, irregular
ventricular contractions give rise to variable diastolic filling time, and reduced overall
cardiac output due to incomplete filling of the ventricles (Clark et al., 1997). In such a
way, both ineffective atrial contraction and disorganized work of the ventricles often cause
detrimental effects on hemodynamics.

Ineffective atrial contractions along with rapid and irregular ventricular response
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cause other cardiovascular conditions to evolve, notably, heart failure (Lau et al., 2014).
However, probably the most life-threatening issue associated with AF is a formation of
blood clots in the atria due to impaired atrial contraction and stagnant blood. Eventually,
blood clots may travel out of the heart through the bloodstream to the brain, lungs, kidney,
the heart itself or get stuck in an artery elsewhere in the body (Nattel, 2002).

AF diagnosis is confirmed on the basis of the surface electrocardiogram (ECG)
where AF is characterized by irregular ventricular activity, the absence of normal atrial
activity representing P-waves, and the presence of continuous fibrillatory f-waves (see
Fig. 2.1).

2.1.2 Epidemiology

Atrial fibrillation is the most common cardiac arrhythmia affecting millions of peo-
ple worldwide (Ball et al., 2013). It has been estimated that 33 million people around the
world are suffering from AF (Chugh et al., 2014). Nevertheless, given that AF is usually
asymptomatic, and undiagnosed for many patients, these numbers most likely represent an
underestimate. Therefore, reasonably larger numbers of actual prevalence are expected,
reaching up to 2 % of the general population (Camm et al., 2010). The prevalence of AF
increases substantially with age, with the odds of developing AF being twice as great for
each advancing decade of age (Benjamin et al., 1994). Consequently, more than 12 % of
adults aged ą 75 years have a diagnosis of AF (Heeringa et al., 2006). In addition, AF is
more common in men than in women, especially at a younger age (see Fig. 2.2).

55−59 60−64 65−69 70−74 75−79 80−84 >85
0

5

10

15

20

25

30

Age group, years

P
re
va
le
n
ce
,
%

All
Men
Women

Fig. 2.2. The prevalence of AF among different age groups. Adapted from Heeringa et al. (2006)

Epidemiological data, gathered over the past few decades, point towards a rapidly
increasing AF prevalence. For instance, analysis of current global epidemiological data
has shown that the number of new AF cases had increased by about 5 million from 1990
to 2010 (Chugh et al., 2014). Several important factors are considered to be among the
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most influential on growing AF epidemic: aging of population, globally increasing num-
bers of people affected by hypertension and obesity, and considerably improved survival
from other cardiovascular diseases, such as heart failure and myocardial infarction. These
conditions cause structural changes in myocardium, and therefore increase the risk for
developing AF (Chugh et al., 2014). On the other hand, emerging novel technologies
for arrhythmia detection (i.e., implantable cardiac monitors, internal and external loop-
recorders) undoubtedly contribute to increased numbers of newly diagnosed AF cases.

According to the latest trends, AF prevalence will increase dramatically in the near
future. Various studies expect a 2–3 fold increase in AF prevalence by the year of 2050
(Go et al., 2001; Miyasaka et al., 2006b; Naccarelli et al., 2009). The estimated numbers
of individuals to be affected by AF in upcoming decades varies quite a lot among different
surveys, falling between 5.6 (Go et al., 2001) to 15.9 million (Miyasaka et al., 2006b)
in the United States alone. Similarly, the most recent data suggest AF prevalence in the
US will rise from 5.2 million in 2010 to 12.1 million by 2030 (Colilla et al., 2013). A
discrepancy among the different studies is mainly caused by the incorrectly estimated
baseline numbers of the population suffering from AF.

Atrial fibrillation, together with related complications (heart failure, stroke, demen-
tia), produce a huge economic burden in many countries, reaching 1–2 % of total health
care expenditure (Wolowacz et al., 2011). For instance, in the US, the annual AF-related
cost was estimated to be in the range from 6.0 (exclusively AF-related costs) to 26.0 bil-
lion dollars (Kim et al., 2011). A wide range of estimated costs was suggested in order not
to underestimate the lower boundary, since it is not completely clear to what extent AF
contributes to detrimental comorbidities that require special medical care. Comparable
numbers of AF-related costs have been estimated in the countries of the European Union.
The Euro Heart Survey on AF (Ringborg et al., 2008) counted the combined annual cost
of 6.2 billion euros in just five European countries (Greece, Italy, the Netherlands, Poland,
and Spain).

Approximately one-third of AF costs are due to hospitalizations, whereas outpa-
tient medical and pharmacy expenditure accounts for the remaining two-thirds (Kim et
al., 2011). In addition, individuals with AF are hospitalized twice as many times as those
without AF, while multiple cardiovascular hospitalizations are even 8 times more com-
mon. As a result, the total direct medical costs are considerably higher (around 70 %) in
patients with AF than in those without AF (Kim et al., 2011). It has been speculated that
at least a 2-fold reduction in AF prevalence could be achieved if other cardiovascular risk
factors were maintained under the safe levels (Huxley et al., 2011).

2.1.3 Mechanisms and pathophysiology

Pathophysiology of AF has been extensively studied over the last 100 years. How-
ever, despite the significant progress made in the last two decades, the underlying mech-
anisms are still not completely understood (Nattel, 2002; Wakili et al., 2011; Iwasaki et
al., 2011; Jalife, 2011). In addition, recent findings reveal a rather shocking truth that
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basically correct hypothesis on the underlying AF mechanisms has already been raised in
the early twentieth century (Nattel, 2002; Jalife, 2011). Therefore, for many decades AF
has exclusively been understood as a consequence of multiple simultaneously originating
re-entrant waves, however, the latest findings suggest at least three principal mechanisms
(focal electrical firing, single-circuit re-entry and multiple-circuit re-entry) responsible for
AF initiation and maintenance (see Fig. 2.3). On the other hand, a condition of multiple
re-entry pathways can be considered as an ultimate stage of arrhythmia development, rep-
resenting the most advanced AF (Iwasaki et al., 2011).

a) b) c)

Fig. 2.3. Principal electrophysiological mechanisms of AF: a) focal electrical firing, b)
single-circuit reentry, c) multiple-circuit reentry

Structural or electrophysiological changes of the atria seem to be the key factors
allowing formation and propagation of abnormal impulses (January et al., 2014). Thus,
once initiated, AF is maintained due to re-entrant wavelets propagating in a damaged atrial
tissue. Although heart contraction is normally initiated by the sinus node, which, in turn,
is the fastest pacemaker of the heart, the exciting impulse may arise from different areas
as well, resulting in an ectopic beat. In many cases, ectopic beats have no adverse effect,
however, if an abnormal firing is more rapid than the driving frequency of the sinus node,
such ectopic activity may initiate AF.

The breakthrough idea of focal electrical firing, as a possible cause of AF initiation,
has been introduced by Hassaguerre et al. in 1998. They found that focal triggers, located
at the pulmonary veins, are the ones responsible for initiation of spontaneous paroxysms
of AF. In fact, this cause of AF initiation was observed in approximately 90 % of all
AF cases. One year later, Chen et al. (1999) reported a similar number (90 %) of AF
causes due to atrial premature beats (APBs), originating in the pulmonary veins. These
findings can be explained by a specific variable atrial cell conduction the pulmonary veins
are associated with. As a consequence, a single-circuit re-entry is usually formed in the
areas around the pulmonary veins owing to favorable conditions for excitatory impulses
to propagate in a circular path in a continuous and repetitive manner.

Ultimately, if AF frequently reoccurs and sustains for longer periods of time, a haz-
ardous condition of atrial remodelling may start, which further leads to a very undesired
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and difficult to manage phenomenon when “AF begets AF” (Wijffels et al., 1995). In
other words, atrial cells start to remodel electrophysiologically during prolonged episodes
of AF, therefore more abnormal atrial substrate is created, which promotes to sustain AF
even longer. As a result, depending on the amount of substrate in the atrial tissue, re-entry
can originate in multiple circuits. During even more advanced stages of AF, i.e., chronic
AF, multiple re-entry circuits may become highly unstable, engaging a rotor re-entry.

2.1.4 Classification

According to the American College of Cardiology (ACC), American Heart Associa-
tion (AHA) and the European Society of Cardiology (ESC) guidelines for the management
of patients with AF (January et al., 2014), AF can be classified into specific types depend-
ing on the duration and ability to self-terminate or to be terminated by some therapeutic
technique (see Table 2.1).

All individuals with a first time diagnosed AF are assigned to the group of “new-
onset AF”, regardless if the particular patient had previously undetected AF episodes or
not. If first diagnosed AF episode terminates spontaneously in less than a week and even-
tually another self-terminating AF episode is detected, AF is named as paroxysmal. Atrial
fibrillation lasting longer than a week is considered as non-self-terminating, and is named
as persistent or long-standing persistent, depending on the duration AF has been sustained.
Various therapeutic strategies can be applied to convert persistent AF to a normal sinus
rhythm (see Sec. 2.1.7 for details), however, when the rhythm recovery is ineffective, or
either can not be terminated, or subsequently relapses, AF is assigned to permanent.

Table 2.1. Principal definitions of atrial fibrillation

AF type Definition
New-onset AF is discovered for the first time. Duration is not important
Paroxysmal Recurrent AF terminating spontaneously within a week
Persistent Recurrent AF sustaining for more than one week
Long-standing persistent Recurrent AF sustaining for more than one year
Permanent An ongoing AF which presence is accepted both by the patient

and clinician
Asymptomatic (silent) AF without recognizable symptoms
Nonvalvular AF that is not associated with mitral stenosis

It should be noted that the presented classification scheme defines paroxysmal AF as
terminating within 7 days, although paroxysmal AF episodes are typically much shorter,
especially those observed at the beginning of arrhythmia development. For example, brief
AF episodes lasting less than 30 s are not currently considered in the classification scheme,
although they are gaining increasing interest (Seet et al., 2011; Flint et al., 2012; Kishore
et al., 2014). More research is needed to show the exact place of brief paroxysmal AF
episodes in clinical practice, however it is quite likely that brief AF is going to be included
into the AF classification scheme (Silver and Windecker, 2015).
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When relying on clinical data, permanent AF is the most commonly detected, occur-
ring in half of all individuals with diagnosed AF, while paroxysmal and persistent AF are
each observed in a quarter of AF patients (Zoni-Berisso et al., 2014). Nevertheless, these
numbers should be treated with caution, since self-terminating AF may be asymptomatic,
and therefore, diagnosed much too late, when AF has already developed to a permanent
form (Engdahl et al., 2013). This reasoning is very well supported by the survey based
on analysis of Canadian Registry of Atrial Fibrillation data which revealed that 8.6 % of
patients, initially diagnosed with paroxysmal AF, had progressed to permanent AF within
1 year, whereas 24.7 % of patients had eventually progressed to permanent AF within 5
years (Kerr et al., 2005). In addition, after initial diagnosis of paroxysmal AF, the recur-
rence of any type of AF has been documented in 63.2 % of patients within the same 5
year period. Moreover, it was later demonstrated that AF progression is more frequent in
patients with underlying diseases, i.e., heart failure and hypertension (de Vos et al., 2010).
Hence, it has been hypothesized that structural remodeling of the atria is a more essential
factor for AF progression than electrical remodeling.

2.1.5 Symptoms

Symptoms of AF vary among individual patients, although the major part of all AF
cases represents asymptomatic AF without any appreciable symptoms at all (Fig. 2.4 a).
In those individuals who are capable of recognising AF episodes, palpitations, fatigue,
dyspnea (shortness of breath), general non-wellbeing, dizziness, chest pain, anxiety, hy-
potension are among the most commonly experienced symptoms (Nabauer et al., 2009;
Lip et al., 2014a) (Fig. 2.4 b).

According to different studies, asymptomatic AF may cover from 30 % to 80 % of all
AF cases (Gaillard et al., 2010; Healey et al., 2012; Lowres et al., 2012b; Lip et al., 2014a).
Moreover, episodes of asymptomatic AF may frequently occur even in patients, assigned
to a symptomatic group (Page et al., 2003). Since individuals with unrecognized (silent)
AF are not aware of having this arrhythmia, and therefore, no treatment is prescribed, they
are at an increased risk of a stroke event or systemic embolism (Quinn and Gladstone,
2014).

2.1.6 Risk factors

There are many well established risk factors responsible for the development of AF
(Table 2.2). The most important are: age, hypertension, heart failure, obesity, valvular
disease, family history, etc. Overall, any heart condition contributing to left atrial en-
largement can be considered as a possible risk factor because atrial enlargement can cause
structural and electrophysiological remodeling of the atria, leading to a favorable condi-
tion for re-entry to sustain. For example, the left ventricle becomes less compliant and
thicker with age, as a consequence, the left atrium also enlarges in order to supply the less
distensible ventricle with blood, thereby eventually causing structural changes of the atria
(Dickinson et al., 2014).
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Fig. 2.4. a) Symptomatic AF versus asymptomatic in patients with different types of AF. b)
Prevalence of the most commonly experienced symptoms among different AF types. Adapted

from Lip et al. (2014a)

Despite being primarily a disease of the older population, paroxysmal AF episodes
may occur in younger individuals as well. This especially applies to young athletes, expe-
riencing extreme workloads during training. While regular physical activity undoubtedly
has a positive effect on cardiovascular health regardless of age (Menezes et al., 2012),
studies of young athletes (ď 35 years) have revealed that intensive physical activity can
also provoke either atrial flutter or AF (Karjalainen et al., 1998; Furlanello et al., 2000).
Especially dangerous are the episodes of atrial flutter with 1:1 atrioventricular conduction,
leading to a potentially fatal ventricular rate of 300 beats/min. On the other hand, owing
to the fact that atrial flutter often evolves to AF (see Sec. 2.2.4), it is essential to avoid
arrhythmia provoking physical activity.

Athletes rarely have arrhythmia at rest, but rather during a competition or immedi-
ately after – during a period of recovery. Monitoring of arrhythmia symptomatic athletes
with a mean age of 22 years showed approximately 5 % prevalence of AF and atrial flutter
(Furlanello et al., 2000). Even though only symptomatic subjects were included in the
study, this finding suggests that athletes who are involved in a highly intensive physical
workload may belong to a higher risk group to develop AF in the future (Calvo et al.,
2012). While exact causes of AF among the athletes remain to be clarified, it has been
speculated that frequent ectopic beats, atrial enlargement, inflammatory processes and in-
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Table 2.2. Risk factors and biomarkers of atrial fibrillation

Increasing age Hyperthyroidism
Hypertension Increased pulse pressure
Diabetes mellitus Male sex
Myocardial infarction European ancestry
Valvular heart disease Family history
Heart failure Genetic variants
Obesity Increased B-type natriuretic peptide
Obstructive sleep apnea Left ventricular hypertrophy
Cardiothoratic surgery Left atrial enlargement
Smoking Decreased left ventricular fractional shortening
Exercise Increased left ventricular wall thickness
Alcohol use Increased C-reactive protein

creased vagal tone might be among the most essential factors (Mont et al., 2009). On the
contrary, a comprehensive review of this topic did not show any significant link between
an increased incidence of AF and regular physical exercises (Ofman et al., 2013).

Family history of AF is also a strong risk factor for developing this type of arrhyth-
mia (Fox et al., 2004). For example, African Americans are more prone to have hyperten-
sion (Dickinson et al., 2014), however, the prevalence of AF among African Americans
is much lower compared to Caucasians, thereby suggesting genetic factors to be very im-
portant for AF development (Ruo et al., 2004). While there is no single gene crucial for
AF development, a cluster of genetic disturbances are thought to be responsible for the
establishment of this condition (Dickinson et al., 2014).

It is fairly obvious that harmful habits, such as excessive alcohol consumption, also
increase the risk of AF (Somes and Donatelli, 2011). In fact, alcohol induced AF is some-
times named as a “holiday heart syndrome” to emphasize the actual cause of arrhythmia
(Ettinger et al., 1978). Similarly, marijuana smoking may also be associated with AF ini-
tiation, most likely due to increased ectopic activity in pulmonary veins (Korantzopoulos,
2014). Although alcohol or marijuana stimulated AF is usually self-terminating in less
than 24 h, reoccurring paroxysmal AF episodes can eventually lead to electrical remodel-
ing of the atria.

2.1.7 Treatment and management

Figure 2.5 presents the most frequently applied pharmacological and nonpharmaco-
logical options for the treatment and management of AF. Currently, drug therapy is usually
recommended, with oral anticoagulants and heart rate controlling drugs being among the
most commonly prescribed medications (Scheinman and Morady, 2001; January et al.,
2014). Unfortunately, both drugs are associated with substantial adverse effects (Heid-
buchel et al., 2013). More specifically, oral anticoagulants increase the risk of bleeding
complications, whereas antiarrhythmic drugs may induce life-threatening ventricular ar-
rhythmias, since they alter the electrical properties of the heart. Although properly chosen
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antithrombotic drugs may reduce the risk of stroke by approximately 60 % (Hart, 2007),
clinicians do not always adhere to the most recent guidelines. As a consequence, oral
anticoagulants are used inappropriately, resulting in ineffective treatment of AF (Scherr
and Jais, 2014; Akao et al., 2014). A breakthrough is expected in this field, since recently
introduced novel non-vitamin K oral anticoagulants are associated with lower complica-
tion rates compared to conventional vitamin K antagonist oral anticoagulants (Enriquez et
al., 2015).

AF treatment and 
management Nonpharmacological

Catheter 
ablation

Rate 
control

Rhythm 
control

Atrial 
pacing

Electrical 
cardioversion

Oral 
anticoagulation

Pharmacological

Fig. 2.5. The basic options for the treatment and management of AF

Other treatment strategies are less frequently used, i.e., electrical and pharmaco-
logical cardioversion is performed in 10 % and 5 % of patients, respectively (Lip et al.,
2014a). In special cases, when pharmacological therapy is ineffective or poorly tolerated,
various nonpharmacological techniques are considered, e.g., atrial pacing to prevent from
maintenance of AF, modification of the atrioventricular node to reduce the ventricular rate
during AF, a surgical division of the atria into segments (Maze procedure) to diminish
the possibility of creating circulating wavelets in the atria, etc. (Scheinman and Morady,
2001).

Nowadays, catheter ablation has proven to be a very effective solution to treat pa-
tients with various arrhythmias, including AF. Several studies have shown catheter ab-
lation to be a superior technique to antiarrhythmic drug therapy, especially in the very
beginning of AF development (Mont et al., 2013; Cully, 2013). Since AF usually starts to
develop in pulmonary veins (see Sec. 2.1.3), these areas of the heart are used as the key
targets for ablative therapy. While catheter ablation is very effective when treating parox-
ysmal AF, its efficiency significantly reduces for persistent AF, usually requiring multiple
ablation procedures together with antiarrhythmic drug therapy (Jalife, 2011). Thus, con-
sidering the high cost of the procedure, and a considerable risk of relapse, catheter ablation
is only applied in 4 % of all AF patients (Lip et al., 2014a). Hence, only these individuals
who may benefit most from the ablation therapy are selected. Nevertheless, it is reason-
ably expected that catheter ablation will become the main therapeutic approach in the near
future, when technologies for early detection of asymptomatic AF will improve (Benjamin
et al., 2009; Gillis et al., 2013).

Two decades ago, an idea of internal atrial cardioversion using an implanted de-
vice has been escalated (Wellens et al., 1998). Ultimately, a company (InControl Inc.,
Redmond, Washington, US) has been established to produce internal atrial cardioverters
under the name of Metrix Atrioverter. The device was designed to perform an internal
atrial defibrillation by inducing low-energy (3 to 6 J) intra-atrial shocks after automated
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identification of paroxysmal AF episodes. Despite this, most paroxysmal AF episodes
had been converted to sinus rhythm by using this technique, consequently, painful shocks
and the high incidence of recurrent AF episodes were the main reasons that forced the
production of this device to close (Gerstenfeld and Everett, 2014). Given that the human
pain threshold is less than 1–2 J, various techniques involving a series of very low-energy
shocks are under investigation (Janardhan et al., 2014). However, a lot of information has
still to be gathered in order to expect a success in clinical practice.

2.2 Comorbidities of atrial fibrillation

Atrial fibrillation itself is not considered as a life-threatening arrhythmia, however
it is associated with various comorbidities (LaMori et al., 2013). While stroke and heart
failure are considered to be among the most detrimental comorbidities, there are lots of
other important health issues significantly related to AF. The most essential of them are
summarized in Table 2.3, and briefly discussed in the sections below.

2.2.1 Ischemic stroke

Ischemic stroke is a brain condition in which brain cells are damaged due to a sudden
blockage of blood flow to some part of the brain. Similarly to AF, the prevalence of stroke
is growing, and is expected to be twice as large by the year 2020 (Mozaffarian et al., 2014).
It has been estimated that nearly a quarter of ischemic strokes are due to cardioembolic
events, with the largest part of these events being attributed to AF (Marini et al., 2005).
Another 25 % of ischemic strokes are not assigned to any cause (cryptogenic stroke).
However, there is a hypothesis that AF may be a contributor to many cryptogenic strokes
(Gladstone et al., 2014; Hart et al., 2014).

AF caused strokes are usually very complicated or even fatal, with nearly 80 % of
patients becoming severely disabled or dead (Saposnik et al., 2013). Older age and higher
propensity to comorbidities are considered as the most essential contributors causing AF
related strokes to be more severe. The risk of stroke can be substantially reduced if oral
anticoagulant therapy is timely prescribed. Unfortunately, owing to the frequently asymp-
tomatic (silent) nature of this arrhythmia, AF is usually detected too late, often after the
stroke event. In addition, according to the current guidelines, AF has to be diagnosed by
some technique in order to start anticoagulant therapy (Culebras et al., 2014; Gladstone et
al., 2014). Therefore, undetected asymptomatic AF may cause subsequent strokes.

Continuous prolonged monitoring using implanted devices (see Sec. 3.2.2) has re-
vealed that paroxysmal AF without perceptible symptoms is very common among patients
after stroke or systemic embolism. For example, paroxysmal AF has been documented in
20.7 % (Christensen et al., 2014), 28 % (Ziegler et al., 2010), and 51 % (Brambatti et
al., 2014) of patients monitored after stroke. Similar prevalence was observed using non-
invasive mobile cardiac outpatient telemetry, where 23 % of stroke patients had paroxys-
mal AF episodes during 21 days of monitoring (Tayal et al., 2008). According to the latest
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Table 2.3. The most commonly encountered comorbidities in patients with AF

Comorbidity Prevalence Essential notes
Ischemic stroke AF is found in 20–51 % of pa-

tients after ischemic stroke
Brief AF episodes (ă 30 s) are
very common among patients af-
ter cryptogenic stroke

Heart failure Heart failure is present in 30–
56 % of patients with AF

Heart failure is more common
among patients with advanced AF

Myocardial
infarction

AF is present in 23 % of patients
after myocardial infarction

The risk of a new-onset AF is
highest within 2 months after in-
farction

Supraventricular
tachycardias

AF is common among the patients
with atrial flutter (58 %) and atrial
tachycardia (27 %)

The number of atrial premature
beats is considered as a marker for
estimating a likelihood of AF

Hypertension Hypertension is documented in
70 % of patients with AF

A blood pressure of 140/80 mm
Hg is suggested as an optimal in
AF patients

Kidney disease AF is found in 10–15 % of pa-
tients with kidney disease, and up
to 18 % in hemodialysis patients

Anticoagulation therapy is com-
plicated in hemodialysis patients
due to increased risk of major
bleeding

Sleep apnea Sleep apnea is present in 50 % of
AF patients

Exact contribution of sleep apnea
to AF development is unclear due
to shared risk factors

Type 2 diabetes
mellitus

Diabetes mellitus is found in
nearly 20 % of AF patients

Unclear implication of other risk
factors (i.e. obesity) to AF devel-
opement

findings, the American Heart Association/American Stroke Association guideline recom-
mended prolonged ECG monitoring as a prevention from recurrent strokes (Kernan et al.,
2014). Although it seems obvious that subclinical AF is associated with an increased risk
of stroke (Healey et al., 2012), the relationship between stroke events and temporal distri-
bution of paroxysmal AF episodes is still unclear. For instance, a study by Brambatti et
al. (2014) showed that only a few patients had AF episodes during the last month before
the stroke event.

An interesting debate has recently arisen whether brief episodes of paroxysmal AF
(ă 30 s) are related to cryptogenic ischemic stroke (Seet et al., 2011; Flint et al., 2012;
Kishore et al., 2014; Favilla et al., 2015; Keach et al., 2015). It has been hypothesized that
brief AF episodes may be coupled to the formation of atrial thrombus, or may be viewed
as biomarkers of prolonged episodes occurring outside of the monitoring period (Seet et
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al., 2011). Accordingly, both non-invasive and invasive recording technology have been
employed for prolonged rhythm monitoring. Tayal et al. (2008) found that in the patients
with AF, 85 % of all episodes were brief, while a study by Flint et al. (2012) showed that
11 % of all patients with cryptogenic ischemic stroke had new onset paroxysmal AF with
5 s episodes or longer. The authors argued that subsequent strokes may be prevented if
patients are monitored during their first month after a stroke.

2.2.2 Heart failure

Heart failure is a condition when the heart has impaired ability of pumping enough
blood into the circulation system. Both heart failure and AF are recognized as epidemic
diseases, remaining the only two cardiovascular conditions associated with still increasing
prevalence (Braunwald, 1997; Dickinson et al., 2014). Heart failure and AF are closely
related to each other, often interact together and share similar risk factors, notably, aging
and hypertension (Chamberlain et al., 2011; Lau et al., 2014). Moreover, both diseases
can be either a cause or a result of each other, and usually predispose to the development
of a pathophysiological cycle where AF promotes progression of heart failure and vice
versa (see explanation in Fig. 2.6).

Atrial fibrillation

Reduced cardiac 
output

Heart failure

Increased filling 
pressures

Fibrosis

Tachycardia induced 
cardiomyopathy

Electrophysiological 
remodeling

Increased left 
atrial size

Fig. 2.6. A pathophysiological cycle of AF and heart failure. Adapted from Anter et al. (2009)

Various clinical trials have reported that approximately one-third of patients with
advanced heart failure also have diagnosis of AF (Darby and DiMarco, 2012). Individuals
with severe heart failure have a very high risk of developing AF, which is even higher
than the risk carried by advanced age or hypertension (Go et al., 2001). On the other
hand, a study conducted in the US showed that 8 % of patients with first diagnosed AF
had developed heart failure within the subsequent year, whereas even 24 % of patients
had developed heart failure within 6 years (Miyasaka et al., 2006a). In addition, in a
large study, which included 10,523 patients with AF, heart failure had been documented
in 30 % of patients with first-detected AF, 33 % with paroxysmal AF, 44 % with persistent

23



AF and in 56 % patients with permanent AF (Silva-Cardoso et al., 2013). Thereby it can
be assumed that advanced AF has a greater impact on the development of heart failure.

Coexistence of AF and heart failure significantly increases mortality rates, compared
to those individuals having either disease alone. For example, patients who had AF prior
heart failure where associated with 29 % increased risk of death than patients with heart
failure, but without AF (Chamberlain et al., 2011). Moreover, individuals who developed
AF after heart failure were linked to more than double the risk of death. Recently, Tail-
landier et al. (2014) reported that the risk of death was higher in patients suffering from
heart failure and permanent AF compared to those with non-permanent AF forms. In addi-
tion, increased death rates were observed both in-hospital and post-discharge (McManus
et al., 2013b). Therefore, considering that both AF and heart failure increase the risk of
stroke and mortality, coexistence of them is especially burdensome and challenging to
manage (Wang et al., 2003; Padeletti et al., 2007; Lau et al., 2014; Lip et al., 2014b).

2.2.3 Myocardial infarction

Myocardial infarction, also known as a heart attack, occurs when the heart muscle is
partially damaged due to a blockage of a coronary artery. Atrial fibrillation is observed as
a common complication of myocardial infarction and is associated with a poor prognosis
(Schmitt et al., 2009; Zusman et al., 2012). On the other hand, AF by itself is indepen-
dently associated with an increased risk of myocardial infarction (Soliman et al., 2014).

Numerous studies have been conducted regarding the relationship of AF and my-
ocardial infarction. Jabre et al. (2011) reported that one of five patients had developed AF
within 5 years after myocardial infarction, with the highest incidence of new AF within
the first month. More specifically, in these patients who developed AF after myocardial
infarction, 30 % had AF within 2 days, 16 % between 3 and 30 days, and the remaining
54 % developed AF after one month. Similar findings were reported by Jons et al. (2011),
where the incidence of new-onset AF was highest within 2 months after myocardial in-
farction (16 %), but decreased towards a plateau level after one year of infarction event.
In addition, 90 % of AF events in that study have been found to be asymptomatic. The
authors separately investigated the influence of brief AF episodes (ă 30 s) on the risk of
major cardiovascular event (repeated infarction, stroke, severe heart failure, death). Pre-
liminary findings indicated that brief AF episodes were not associated with an increased
risk of a major cardiovascular event.

Since myocardial infarction itself is a very serious condition, a complication of AF
markedly exacerbates the perspectives of full recovery (Schmitt et al., 2009). For exam-
ple, a study by Berton et al. (2009) demonstrated that a presence of AF (either new-onset
or persistent) during a 7 year follow-up after myocardial infarction was associated with
55 % higher mortality rates compared to those patients with sinus rhythm. In addition,
patients were linked to a worse prognosis if AF had developed after myocardial infarc-
tion, compared to those who had had AF before infarction occurred (Rathore et al., 2000).
While another study showed that patients with sustained AF had higher in-hospital death
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rates than those who developed a new-onset AF, it should be noted that a group of patients
with chronic AF, on average, was older and sicker (Maagh et al., 2011). Based on the fact
that AF is associated with significantly worse short-term and long-term recovery progno-
sis, it has been suggested that such patients should be monitored more carefully for AF
and treated more aggressively if AF is identified (Pizzetti et al., 2001; Bang et al., 2014).
Moreover, it has been estimated that up to a half of myocardial infarction events remain
clinically unrecognized (de Torbal et al., 2006). However, even unrecognized myocardial
infarction is associated with a 2-fold increased risk of developing AF (Krijthe et al., 2013).

There is a theoretical basis to assume that AF may alter electrophysiological prop-
erties of the ventricles. In such a way, AF can contribute to the development of ven-
tricular fibrillation in post-myocardial infarction patients owing to the vulnerability of
myocardium after the infarction event. The hypothesis was partially confirmed by the sig-
nificantly higher numbers of ventricular fibrillation observed in patients with AF during
admission with myocardial infarction (Sankaranarayanan et al., 2008). If further con-
firmed, this observation will be of special importance, forming a basis for more careful
monitoring of AF to avoid in-hospital deaths.

Since myocardial infarction can occur in different areas of the heart, it is an open
question whether localization of myocardial infarction could be considered as a risk factor
for AF development. In fact, a preliminary study reported higher risk of AF in patients
who had suffered anterior wall myocardial infarction, though further studies are needed to
draw the explicit conclusions on this clinically relevant topic (Jabre et al., 2011).

2.2.4 Supraventricular tachycardias

Since AF itself is a supraventricular tachycardia, it is not completely correct to as-
sign supraventricular tachycardias to AF comorbidities. However, a significant role of
other supraventricular tachycardias on the development of AF, close relationship and even
common coexistence deserves special attention. There is much evidence that the risk of
AF is higher in patients experiencing other types of supraventricular tachycardias, no-
tably atrial flutter (Chinitz et al., 2007; Ozcan et al., 2014), both atrioventricular nodal
re-entrant tachycardia and atrioventricular re-entrant tachycardia (Hamer et al., 1995;
Khachab, 2013), and atrial tachycardia. In addition, although frequent atrial premature
beats cannot be named as a supraventricular tachycardia, due to the similarity to atrial
tachycardia, as well as the close relationship to AF (Wallmann et al., 2007; Chong et al.,
2012; Gladstone et al., 2015), APBs deserve to be mentioned.

A large study by Ozcan et al. (2014) found that AF is most common among pa-
tients with atrial flutter (58 %) and atrial tachycardia (27 %), while much lower numbers
were observed in patients with atrioventricular re-entrant tachycardia (14 %) and atrioven-
tricular nodal re-entrant tachycardia (10 %). Hence, patients with any supraventricular
tachycardias should be examined more closely in order not to overlook the beginning of
AF (Khachab, 2013). An illustration of the driving mechanism of each of the above-
mentioned supraventricular tachycardias including APBs is depicted in Fig. 2.7.
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Fig. 2.7. Electrophysiological mechanisms of a) frequent atrial ectopy / atrial tachycardia, b) atrial
flutter, c) atrioventricular nodal re-entrant tachycardia, and d) atrioventricular re-entrant

tachycardia

Atrial premature beats have been considered as benign for a long time, however,
recent studies have shown that APBs are very common in individuals with AF, and are
linked to almost a 3-fold increased risk of AF (Binici et al., 2010; Chong et al., 2012;
Conen et al., 2012). Based on several clinical studies, the excessive ectopic activity has
been suggested as a predictor of the likelihood for an individual to have paroxysmal AF
(Wallmann et al., 2007; Weber-Kruger et al., 2013; Gladstone et al., 2015). For exam-
ple, a close relationship between frequent APBs and increased risk to have or to develop
paroxysmal AF was found in a group of patients with ischemic stroke (Wallmann et al.,
2007). Similarly, a recent study by Gladstone et al. (2015) provided a clearer picture on
the relation of frequent APBs and AF. Their finding was that individuals with ă 100 APBs
per 24 h were linked to 9 % probability of having AF, while those with ą 1000 APBs per
24 h were related to ą 37 % probability of AF. Based on the observation that APBs are
more frequent in patients with AF than in those without AF, the authors argued that the
number of ABPs may be used as a possible marker to determine which patients are most
likely to have AF. While the exact clinical meaning of APBs to the development of AF is
not fully clear and needs further investigation, there is sufficient evidence that APBs may
trigger paroxysmal AF episodes (Chen et al., 1999).

Atrial tachycardia is caused by a focal activity, i.e., micro-re-entrant loop or auto-
matic focus, thus is closely related to frequent APBs. In addition, both frequent ectopic
beats and atrial tachycardia share similar presentation on the surface ECG, and in some
cases, may even have similarities to brief episodes of AF. Atrial tachycardia may also ini-
tiate AF, although such a scenario is very rare, occurring in just 1 of 100 cases (Kolb et
al., 2001).

Atrial flutter is commonly encountered with supraventricular tachycardia, usually
resulting from a re-entrant path around the tricuspid valve in the right atrium. Similarly
to AF, atrial flutter is characterized by a high atrial contraction rate, though atrial flutter
is more organized than AF. There is clear evidence that atrial flutter may develop to AF
(Chinitz et al., 2007), or may alternate with AF (Horvath et al., 2000). Atrial flutter
may also initiate AF, although less commonly, in approximately 1 of 20 cases (Kolb et

26



al., 2001). In some situations, when atrial flutter co-exists with a condition of variable
atrioventricular block, the heart rate may become irregular, and therefore, due to similar
presentation on the ECG, atrial flutter can be confused with AF (Link, 2012).

Both atrioventricular nodal re-entrant tachycardia and atrioventricular re-entrant
tachycardia are caused by the pathological electrical re-entrant loop involving the atri-
oventricular node. Both tachycardias are common among the younger population, and
share similar characteristics, i.e., regular heart rate reaching up to 250 beats per minute.
There is some evidence that atrioventricular nodal re-entrant tachycardia can trigger AF or
coexist with, however, such phenomenon is less commonly encountered in elderly individ-
uals (Sauer et al., 2006). Nevertheless, an interesting clinical case has been documented,
showing simultaneously occurring atrioventricular nodal re-entrant tachycardia and AF in
a 33-year-old woman (Saluja et al., 2015). However, such theoretically unlikely collabo-
ration was linked to a unique heart anatomy of this particular patient.

It is noteworthy that a very large study of 4.8 million patients showed an independent
association between supraventricular tachycardias (excluding AF) and stroke (Kamel et
al., 2013). Thus, the occurrence of any kind of supraventricular tachycardia has been
suggested for consideration as a risk factor for thrombus formation and stroke.

2.2.5 Other notable comorbidities

Hypertension is considered as one of the most essential contributors to AF develop-
ment. Given that hypertension is a widely prevalent condition, there is nothing unexpected
as hypertension is found in more than 70 % of individuals with AF (Chiang et al., 2012).
Since the relationship between these two conditions is very complex, it is not clear how
hypertension contributes to AF development (Kirchhof and Schotten, 2006). However,
atrial remodelling due to elevated pressures is considered as the most likely cause (Go and
Rosendorff, 2009).

While blood pressure of ă 120/80 mm Hg is considered as completely normal for
healthy individuals, it is not the case in some cardiovascular conditions, for instance,
after acute coronary syndromes (Bangalore et al., 2010). Considering that antiarrhythmic
drugs used for AF treatment decrease blood pressure, it seems important to find optimal
blood pressure values which may reduce the risk of adverse effects in AF patients. A
recently published study by Badheka et al. (2014) assessed this topic by demonstrating
both systolic and diastolic blood pressure to produce a U-shaped relationship with respect
to all-cause mortality. The optimal blood pressure was found to be around 140/80 mm Hg,
whereas both lower and higher blood pressure values were associated with the increased
mortality rates.

Kidney disease is usually found in 10–15 % of patients with AF (Camm et al., 2010),
and is associated with 2-fold higher mortality rates compared to individuals with kidney
disease but without AF (Winkelmayer et al., 2011). Reduced kidney function is a potential
independent risk factor for a new-onset AF, especially when it coexists with anemia (Xu et
al., 2015) or left atrium enlargement (Sciacqua et al., 2014). Furthermore, AF coexistence
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with chronic kidney disease was reported to be associated with a 67 % higher rate of
progression to end-stage renal disease (Bansal et al., 2013).

Atrial fibrillation is commonly encountered in hemodialysis patients owing to promi-
nent electrolyte changes and hemodialysis induced structural and electrical remodelling
of myocardial tissue. Genovesi et al. (2005) reported that AF was found in 27 % of
hemodialysis patients (paroxysmal in 3.5 %, persistent in 9.6 %, permanent in 13.9 %).
Such prevalence is not surprising, since hemodialysis is prescribed to individuals with
end-stage kidney disease. However, high AF prevalence has been observed even among
the individuals with primary stages of chronic kidney disease (Baber et al., 2011). When
compared to individuals without chronic kidney disease, AF prevalence was found to be
2.8 %, 2.7 % and 4.2 % higher for patients with stage 1 to 2, stage 3, and stage 4 to 5, re-
spectively. Similar findings were reported in another study where AF was present in 18 %
of patients, with increased prevalence of up to 25 % for patients ě 70 years-old (Soliman
et al., 2010).

Piccini et al. (2013) argued that renal dysfunction in AF patients further increases
the risk of stroke and systemic embolism, therefore should be worthy to be included into
the scheme of stroke risk stratification. However, there is no clear principle on the manage-
ment of such patients, since oral anticoagulation therapy (i.e. using warfarin) increases the
risk of major bleeding of up to 10-times in this group (Jun et al., 2015). Gastrointestinal
(58 %) and intracranial (5 %) bleeding were documented as the most frequently occur-
ring major bleeding events in patients with renal dysfunction. Hence, treatment against
the formation of blood clots in these patients is a complicated problem, requiring careful
assessment of the risk-benefit ratio (Reinecke et al., 2009; Jun et al., 2015).

Obstructive sleep apnea is found in half of AF patients (Gami et al., 2004). Recent
findings show that individuals with sleep apnea have structural changes in the atria, i.e.,
increased atrial size, abnormal electrical conduction in some regions, remodelled sinus
node (Dimitri et al., 2012). Therefore, apnea induced tension in the atria and pulmonary
veins is suggested as a key factor for AF development. On the other hand, sleep apnea is
closely related to obesity, which is itself a strong risk factor for cardiovascular diseases
and AF. Nevertheless, many other hypotheses exist on the contribution of sleep apnea to
AF development that need further investigation (Menezes et al., 2013). Interestingly, AF
patients with sleep apnea are associated with a 25 % increased risk of AF recurrence after
procedure of pulmonary vein ablation, thereby it is recommended to treat sleep apnea
prior to catheter ablation (Ng et al., 2011).

There is a hypothesis that type 2 diabetes mellitus may contribute to tissue damage
in the atria (January et al., 2014). Accordingly, clinical data has shown a possible relation-
ship between type 2 diabetes mellitus and AF. For example, Aksnes et al. (2008) reported
that a new-onset AF was 50 % more common in individuals who had developed a new-
onset diabetes mellitus compared to those without. Similarly, a large study by Chiang et
al. (2012), which included 9816 patients with AF, showed that diabetes was present in
approximately 20 % of AF patients. On the contrary, several studies have declared no
statistically significant association between these two health conditions (Ostgren et al.,
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2004; Schnabel et al., 2009). A disagreement between the studies might be influenced by
methodological reasons, because other AF causing factors (i.e. obesity), which are usually
present among the diabetes patients, were not considered in several studies (Menezes et
al., 2013).

2.2.6 Health-related quality of life

Several pilot studies have paved the way for speculation that both paroxysmal and
persistent AF may reduce physical and mental health (Patel et al., 2013). Although a
small study of twenty-seven 75-year-old patients suffering from permanent AF failed to
find any significant differences in sleep quality, anxiety, and depression rates compared
to the sinus rhythm group, the patients with AF were associated with a significantly re-
duced physical condition and social functioning (Ariansen et al., 2011). Since the study
included only patients with permanent AF (median AF duration was 5 years), it is rea-
sonable to assume that these patients were accustomed to disease, thereby relieving the
symptoms of depression. On the contrary, another study reported depression to be more
pronounced in patients, experiencing persistent AF than paroxysmal AF (von Eisenhart
Rothe et al., 2014). This contradiction implies that further studies are needed to gather
more information on the topic.

Dublin et al. (2011) have hypothesized that AF may contribute to the development
of dementia and Alzheimer’s disease. Their reasoning is based on the knowledge that an
increased irregular rhythm may cause cerebral hypoperfusion, while incomplete emptying
of the atria can subsequently lead to systemic embolism and cerebral microinfarcts. In
fact, individuals with AF were 38 % more likely to have dementia and 50 % more likely
to have Alzheimer’s disease than those without AF (Dublin et al., 2011). Later, the same
group analyzed autopsy data and found neuropathological changes (cerebral infarcts) in
45 % of individuals with AF (Dublin et al., 2014). Given these points, a debate on AF
contribution to the development of Alzheimers disease is evolving, even though more
clinical evidence is needed to confirm this reasoning.

2.3 Conclusions of the chapter

1. Many studies report the prevalence of atrial fibrillation to increase substantially in
the future due to the fast aging of the population.

2. Paroxysmal AF is usually asymptomatic and therefore can be much more common
than it was previously assumed.

3. Atrial fibrillation is a progressive disease, hence it is very important to find effective
ways to manage AF in the early stages of arrhythmia development.

4. Atrial fibrillation itself is not considered as a life-threatening arrhythmia, however,
it has a huge impact on making more severe various comorbidities, such as stroke,
heart failure, myocardial infarction.
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5. Timely prescribed anticoagulation therapy may significantly reduce the number of
strokes. However, on the basis of the current guidelines, AF must be identified in
order to initiate anticoagulation treatment.

6. There is an ongoing debate whether brief paroxysmal AF episodes lasting less than
30 s are biomarkers of longer subclinical AF episodes.
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3 OVERVIEW OF EXISTING TECHNOLOGIES FOR DETECTION OF ATRIAL
FIBRILLATION

3.1 Existing methods for automatic detection of atrial fibrillation

3.1.1 Rhythmogram-based atrial fibrillation detection

In clinical practise, AF is normally identified by analysing the surface ECG signal.
Three rather explicit criteria have to be satisfied: highly irregular ventricular response, the
absence of normal atrial activity representing P-waves, and the presence of continuous,
usually chaotic, fibrillatory f-waves. Since the ventricles are activated at irregular time
instances during AF, a signal comprised of time intervals (RR intervals) between adjacent
heart beats, further denoted as r, appear to be very different from that observed during
sinus rhythm (see Fig. 3.1). Hence, ventricular activity irregularity is the most widely uti-
lized feature for automatic AF detection. An additional attractive advantage of r interval
analysis is that r intervals are relatively easy to obtain because heart beats (R-waves) are
usually well recognizable, even in noisy environments.
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Fig. 3.1. Example of r interval series during a) sinus rhythm and b) atrial fibrillation

Moody and Mark (1983) were among the first to publish on the topic of automatic
AF detection. Additionally, the authors of the paper introduced an ECG database, nowa-
days known as MIT-BIH Atrial Fibrillation database (AFDB), containing signals with
paroxysmal AF episodes. The database has been collected by the Arrhythmia Laboratory
of Beth Israel Hospital and is unofficially considered as the “gold-standard” for testing
AF detectors. Moody and Mark proposed three versions of AF detector relying on the
Markov modelling technique, where sensitivity (Se) and positive predictive value (PPV )
for the best performing algorithm were 93.6 % and 85.9 %, respectively.

Histogram analysis based atrial fibrillation detection
Two decades later, Tateno and Glass (2001) introduced an AF detector, which per-

forms rhythm classification with respect to histogram similarity to histogram templates,
prepared using r and ∆r (differences between adjacent r intervals) sequences collected
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Fig. 3.2. Examples of r (upper row) and corresponding ∆r (bottom row) interval histograms
obtained for the same patient during AF. Histograms are composed of 100 r/∆r intervals at a) the

initial time instance, b) 30 s later, c) 30 min later

during AF. Histogram similarity is quantitatively evaluated by applying Kolmogorov-
Smirnov test. When using histograms composed of 100 ∆r intervals, Se of 94.4 % and
specificity (Sp) of 97.2 % were achieved for the AFDB database. It should be noted,
that considerably worse performance (Se = 91.2 % and Sp = 96.1 %) was obtained af-
ter reinvestigation of the algorithm by Larburu et al. (2011). The algorithm suffers from
the limitation of requiring many r intervals to obtain the representative ∆r histograms,
which, in turn, restricts the ability to detect brief AF episodes. Furthermore, since there is
no standard prototype of AF histogram, i.e., r and ∆r histograms can take very different
shapes, even for the same patient (see Fig. 3.2), or can be bimodal or multimodal, such an
approach to AF detection may produce an erroneous response in certain situations.

Kolmogorov-Smirnov test based ∆r interval histogram analysis was also involved
in an AF detector proposed by Huang et al. (2011). On the whole, seven threshold based
steps are utilized to identify the transition between AF and non-AF rhythms, and subse-
quently classify rhythms into specific classes. A special attention is paid to the problem of
false-positives due to various types of ectopic activity. A 7-point median filter is used
for the suppression of individual premature beats, whereas ectopy-induced concurrent
rhythms (bigeminy, trigeminy) are eliminated by applying templates, predefined for the
particular type of abnormal rhythm. Despite that their approach of involving a sequence
of threshold-based steps is computationally complex, a solid performance was reported –
for the AFDB, the Se and Sp were 96.1 % and 98.1 %, respectively. On the other hand,
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since the algorithm has been developed and tested on the same database, the actual per-
formance is questionable. Given that rhythm change is identified by analysing segments
of 100 ∆r intervals, therefore there is no surprise that the undetected AF episodes were
of short duration, lasting from 4 to 62 beats.

Poincaré plot based atrial fibrillation detection
Another group of AF detectors relies on analysis of a two dimensional scatter plot

(Poincaré plot, Lorenz plot), plotted of current r (or ∆r) intervals versus preceding in-
tervals. Based on this approach, Sarkar et al. (2008) have developed an AF detector for
primary use in implantable long-term monitoring devices; both detection of AF and atrial
tachycardia were taken into account. A sequence of ∆r intervals is collected during a
2 min period of time, and then represented in the Poincaré plot. In such a way, each rhythm
type (sinus rhythm, AF, atrial tachycardia, etc.) takes a specific pattern corresponding to
each rhythm (see Fig. 3.3). Ultimately, a set of rules is applied to determine which pattern
is represented by the Poincaré plot. For the AFDB database, with AF episodes shorter than
2 min excluded, the Se and PPV were 94.7 % and 95.8 %, respectively. Since a con-
siderably larger number of ∆r intervals is collected over 2 min period during faster heart
rates than slower, this implies that the Poincaré plot represents the specific rhythm more
accurately when a higher number of ∆r intervals is involved. Considering that the per-
formance is heart rate dependant, the proposed algorithm performs best when arrhythmia
episodes are not shorter than the analysis window itself.
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Fig. 3.3. a) Poincaré plot divided into segments used to encode the corresponding rhythm type.
Examples of patterns obtained during b) sinus rhythm, c) sinus rhythm with frequent ectopic

beats, and d) atrial fibrillation

Later, a conceptually similar AF detector was introduced by Lian et al. (2011).
Different from the previous approach, a scatter plot of r intervals versus ∆r intervals is
composed instead. In such a way, 2 independent sources of heart rate information (r and
∆r) are explored. The scatter plot is divided by a grid into segments of 25 ms resolution.
Subsequently, the number of cells, containing at least 1 data point is counted and used as a
subject for threshold based AF detection. The best performance was obtained by applying
a detection window of 128 r intervals (Se = 95.8 % and Sp = 96.4 % for the AFDB),
whereas the performance decreased when a window of 32 r intervals was used instead
(Se = 94.3 % and Sp = 95.1 %).
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Statistical approaches for atrial fibrillation detection
Two statistical approaches for AF detection have been proposed by Ghodrati and

Marinello (2008) under the support of Draeger Medical Systems (Draeger Medical Sys-
tems Inc., Andover, Massachusetts, US). A Neyman-Pearson detection principle was uti-
lized to establish a criteria for AF detection, assuming that ∆r intervals are distributed
according to either Gaussian or Laplace functions. First of all, two histograms, repre-
senting AF and non-AF rhythms were composed using ∆r intervals obtained from the
MIT-BIH Arrhythmia database. Then, both Gaussian and Laplace probability density
functions were fitted to each histogram. Ultimately, the Neyman-Pearson approach to sta-
tistical learning was employed to obtain the threshold value to distinguish between AF
and sinus rhythm.

When assuming that ∆r intervals are distributed according to Gaussian probability
density function, the Neyman-Pearson detection criteria can be simplified to the test of
∆r variance, whereas in the case of Laplace probability density function, the criteria can
be simplified to the test of absolute deviation of ∆r intervals. To reduce a negative influ-
ence of ectopic beats, ∆r values larger than the predefined threshold are omitted. Both
detection criteria are associated with a rather poor performance, although slightly better
detection results (Se = 89 % and PPV = 87 % for the AFDB database) were obtained by
using Laplace probability density function as a basis for the histogram approximation.

Dash et al. (2009) proposed an AF detector relying on the combination of three
straightforward algorithms (the turning point ratio, the root mean square of successive
differences and the Shannon entropy), suitable to characterise variability and complexity
of r intervals. A segment of r intervals is flagged as AF when the output of each separate
algorithm exceeds the predefined threshold for AF. In addition, the algorithm utilizes a
supplementary step of ectopic beat filtering to reduce the number of false alarms due to
ectopic activity. For the AFDB dataset, with the records 04936 and 05091 omitted, the
Se and Sp were 94.4 % and 95.1 %, respectively. Several years later, Andersson et al.
(2015) implemented the algorithm in an ultra-low energy application specific integrated
circuit (ASIC). It is very impressive that both algorithmic and architectural optimization
resulted into a hardware, requiring a supply voltage of just 290 mV, thereby forming a
solid basis for implementation in implantable loop recorders. The basic architecture of
this AF detector is showed in Fig. 3.4.

Lee et al. (2013b) have investigated the Shannon entropy, the root mean square of
successive differences, and the sample entropy (described later) in terms of AF detec-
tion using a video camera of an iPhone. By capturing a video signal from a fingertip
it is possible to obtain a photoplethysmography signal, which may further be used for a
peak detection. Similarly to ECG, the peaks in the photoplethysmography signal repre-
sent ventricular contractions, allowing to compose a surrogate (pulsatile) r interval series.
The above mentioned statistical algorithms were tested on the AFDB and Normal Sinus
Rhythm databases, but with r interval series rescaled to 30 Hz in order to simulate the
sampling rate of the iPhone’s video camera. The best performance was achieved by using
the sample entropy which was notably better compared to the root mean square of succes-
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Fig. 3.4. Architecture of hardware implementation of the AF detector originally proposed by
Dash et al. (2009) and later optimized by Andersson et al. (2015). Here FIFO stands for a first-in

first-out memory

sive differences and the Shannon entropy. By using this approach, AF detection should be
performed in the segments containing 64 r intervals, which implies that the finger has to
be attached to the camera for about 1 min. The authors also reported that both the sam-
ple entropy and the Shannon entropy were associated with worse performance for higher
pulse rates, although the performance of the root mean square of successive differences
did not deteriorate in this particular case.

The same year, Lee et al. (2013a) introduced another AF detector utilizing a combi-
nation of the Shannon entropy and the time-varying coherence function. The time-varying
coherence function is obtained by multiplying two time-varying transfer functions, of
which the first is derived by involving two adjacent r interval segments – preceding as
the input signal, and subsequent as the output signal. The second transfer function is
derived by reversing the input and output signals. Ideally, the time-variance coherence
function takes values close to 1 over the entire frequency band for regular rhythms, and
considerably lower values when any r interval segment contains AF. Since this approach is
sensitive to irregularities occurring in any of each segment, the ectopic beat filtering intro-
duced by Dash et al. (2009) was implemented for the purpose to reduce the false-positive
rate. Nevertheless, the time-varying coherence function based approach performed only
slightly better compared to the AF detector relying on the Shannon entropy alone. On the
other hand, the combination of both algorithms led to a superb performance (Se = 98.2 %
and Sp = 97.7 % for the AFDB with records 4936 and 5091 excluded). It should be noted
that the latter result was achieved using segments of 128 r intervals, however, significantly
worse performance (Se = 94.7 % and Sp = 90.4 %) was obtained when segments of 12 r

intervals were analysed. The authors reported that the main source of false-positives was
the presence of other arrhythmias, covering more than 50 % of the analysis window.

Recently, the Shannon entropy was utilized as a core technique in a three step de-
tection procedure introduced by Zhou et al. (2014). At first, a sequence of r intervals is
pre-processed by linear and nonlinear digital filters in such a way that two signals, further
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used as a low and high scale references, are produced. Subsequently, with respect to the
obtained reference signals, initial r intervals are converted into a series of symbols from
0 to 9, where the symbolic sequence itself reflects the differences between the adjacent
r intervals, i.e., larger values are taken when the difference between the contiguous r in-
tervals is larger. Finally, a measure of Shannon entropy is applied to quantify the amount
of information contained in the symbolic sequence. Ideally, a low amount of information
is contained during sinus rhythm, whereas the Shannon entropy is expected to increase
during the episode of AF. In addition, the authors provided a recursive realization of the
algorithm with considerably reduced computational complexity. To ensure high perfor-
mance (Se = 96.9 % Sp = 98.3 % for the AFDB), the detection window of 127 r intervals
should be applied, therefore brief episode AF detection is limited by using this high per-
forming algorithm.

Table 3.1. Comparison of rhythmogram-based AF detectors in terms of detection performance on
the MIT-BIH Atrial Fibrillation database (AFDB). Records “04936” and “05091” are excluded in
AFDB1

Window length,
Algorithm r intervals Database Se, % Sp, % PPV , %
Moody and Mark (1983) 20 AFDB 93.6 na 85.9
Tateno and Glass (2001) 100 AFDB 94.4 97.2 96.0
Sarkar et al. (2008) 2 min AFDB 94.7 na 95.8
Ghodrati and Marinello (2008) 30 AFDB 89 na 87
Lian et al. (2011) 128 AFDB 95.8 96.4 na

64 AFDB 95.7 96.0 na
32 AFDB 94.3 95.1 na

Dash et al. (2009) 128 AFDB1 94.4 95.1 na
Huang et al. (2011) 100 AFDB 96.1 98.1 na
Lake and Moorman (2011) 12 AFDB 91 94 na
Lee et al. (2013a) 128 AFDB1 98.2 97.7 na

12 AFDB1 94.7 90.4 na
Zhou et al. (2014) 127 AFDB 96.9 98.3 97.6
Andersson et al. (2015) 128 AFDB 94.9 95.8 na

The above discussed algorithms are optimized for detection of AF episodes that are
longer than 1 min. However, in accordance to the growing interest in detection of brief
AF episodes, several algorithms have been proposed that can be effective even when brief
AF episodes occur. An interesting r-based detector was proposed by Lake and Moorman
(2011) to detect AF in very short physiological times series where the coefficient of sam-
ple entropy is employed to identify AF episodes with as few as 12 beats. A sample entropy
based AF detector relies on the basic assumption that r intervals exhibit much higher vari-
ability during AF than sinus rhythm. As a result, the partly repeated pattern of r intervals
during sinus rhythm reduces the entropy of the signal, while a completely different image
is observed during AF where irregular rhythm increases the entropy. As a matter of fact,
the algorithm is very sensitive to other types of irregular rhythms, therefore additional pre-
processing steps are indispensable to reduce the number of false-positives due to ectopic
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beats. Since ectopic beat filtering was not implemented by Lake and Moorman (2011),
it is no surprise that the performance using detection window of just 12 r intervals was
markedly worse (Se of 91 % and Sp of 94 % for the AFDB) than that obtained using
previously described AF detectors.

In an additional study, Langley et al. (2012) investigated the sample entropy in
terms of detection performance when short ECG segments (5 to 60 s) were the target of
interest. When evaluating the performance of the sample entropy on short duration ECGs,
an area under the receiver operating characteristic (ROC) of 90.2 % was achieved when a
5 s window was used (Langley et al., 2012).

To sum up, the performance of all algorithms discussed above is provided in Ta-
ble 3.1.

3.1.2 Morphology-based atrial fibrillation detection

Atrial activity takes recognizably different pattern on the surface ECG during AF
(see Fig. 3.5). For this reason, the inclusion of atrial activity characterizing parameters into
the AF detection process theoretically should be beneficial when discriminating between
AF and other irregular rhythms. However, ECG signals recorded during daily activities are
often of low quality, making atrial activity analysis especially challenging. Consequently,
the majority of AF detectors take the r interval series as the starting point, whereas only a
few detectors also involve information on P-wave and f-wave morphology.
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Fig. 3.5. ECG signals recorded during a) sinus rhythm, and b) atrial fibrillation

Atrial activity based atrial fibrillation detection
Slocum et al. (1992) were among the first to introduce an algorithm for AF detection

relying solely on the analysis of the atrial activity signal, which, in turn, is obtained by
cancelling the ventricular activity (QRST) on the surface ECG. In order to acquire the
atrial activity signal, the authors proposed an averaged QRST beat subtraction technique,
in which the averaged QRST complex is aligned at the fiducial point (the peak of R-wave),
and then subtracted from the surface ECG (see detailed explanation in Section 3.4.2).
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Two major steps are involved in this AF detector: at first, the presence of P-waves
is tested, and if succeeded, the analyzed ECG segment is subsequently considered as non-
AF. However, if P-waves are not identified, the power spectrum of atrial activity signal
is computed to identify a spectral peak of the suspected fibrillatory activity. The algo-
rithm was tested on 148 ECG signals, of which 28 % were AF, 28 % other rhythms, and
the remaining 46 % belonged to sinus rhythm. The results showed unsatisfactory perfor-
mance of just 68.3 % sensitivity and 87.8 % specificity. A low amplitude of f-waves (33
˘ 11 µV) in some of the test signals was reported as a major cause of low sensitivity.
Moreover, the averaged beat subtraction technique tends to produce QRST residuals in
the remaining signal, thereby obscuring the f-waves spectral peak. Nonetheless, despite
the proposed AF detector showing poor performance, Slocum et al. laid the foundations
for atrial activity extraction techniques, as well as for the development of atrial activity
information involving AF detectors.

Recently, another AF detector based solely on atrial activity analysis has been devel-
oped (Ladavich and Ghoraani, 2015). The driving motivation to invoke only atrial activity
into the AF detection process was an issue of AF detection in special conditions when r

interval irregularity is highly reduced due to rate-controlling drugs or a pacemaker. In this
AF detector, QRS complex preceding PR interval, where P-wave is normally supposed to
be, is used for analysis. A total of nine features are calculated, where six of them repre-
sent P-wave morphology, while the remaining three are obtained by calculating the basic
statistics (variance, skewness, kurtosis) of the samples in the segment. Finally, a Gaussian
mixture model is trained to discriminate between learned P-wave morphology and mor-
phology deviations, i.e., those due to the presence of f-waves. By using this technique, AF
detection is performed either in a single ECG beat, or in 7 beats, although considerably
better performance was achieved by the later approach (Se = 98.1 % and Sp = 91.7 %
compared to Se = 89.4 % and Sp = 89.5 % for the selected 20 records of the AFDB
database).

Despite the ability to detect brief AF episodes and overcome situations when r inter-
val irregularity is reduced due to the use of rhythm controlling drugs or a pacemaker, the
algorithm has several major shortcomings. Most importantly, the algorithm was developed
on the assumption that ECG signals are free of noise and electromyographic artefacts,
let alone the fact that misclassification may occur during P-wave morphology variations.
Moreover, to ensure satisfactory performance, the classifier has to be trained for each pa-
tient individually by using at least half an hour of sinus rhythm ECG. Considering all the
mentioned points, the algorithm is unsuitable for implementation in clinical practice.

Atrial and ventricular activity based atrial fibrillation detection
Babaeizadeh et al. (2009) published results on AF detection using combined the

information of both ventricular and atrial activity. Their starting point was to develop an
algorithm based on r interval analysis with the Markov modelling approach employed as
a core technique. The algorithm was further enhanced by combining information of r

irregularity with PR interval variability and P-wave morphology. Given that PR interval
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duration during sinus rhythm is rather stable, PR variability is negligible. However, PR
interval variability increases considerably during AF due to the absence of a relatively
stable fiducial point, which is dependent on the P-wave. P-wave morphology describing
parameter is obtained by calculating the similarity between 2 adjacent P-waves. Ideally,
P-waves match each other during sinus rhythm, while matching is poor when P-waves are
replaced by chaotic f-waves. These theoretical assumptions would apply very well in a
low-noise environment, but ambulatory ECG recordings are usually corrupted by noise
and electromyographic artefacts, thus diminishing the additive value of P-waves. As a
result, the performance was only slightly better (Se = 92 % and PPV = 97 % for the
AFDB with records 00735 and 03665 excluded) than that achieved by the same detector
but without atrial information involved. In addition, all episodes shorter than 1 min were
excluded from their study.

An AF detector proposed in (Couceiro et al., 2008; Carvalho et al., 2012) appears
to be the first with an architecture that jointly processes information on r irregularity, P-
wave absence, and f-wave presence (Fig. 3.6). Six features are extracted from the ECG
signal and then an artificial feed-forward neural network is employed as a classifier, first
trained on a huge dataset. Similar to other AF detectors, this detector requires that ven-
tricular premature beats (VPBs) are first located and excluded. Nevertheless, using the
AFDB database, the performance was not better (Se = 93.8 % and Sp = 96.1 %) than that
achieved by some best performing r-based detectors. A possible explanation to this result
is that the decision process did not account for the prevailing noise level.
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Fig. 3.6. Block diagram of AF detector involving information of r irregularity, P-wave absence,
and f-wave presence. Adapted from Carvalho et al. (2012)

Hayes and Teal (2013) proposed a cumbersome approach for AF detection which
incorporates a total of 29 features and 12 support vector machine classifiers. Both mor-
phological and rhythm features are involved into the detection processes. However, differ-
ent from other algorithms, morphology analysis is involved not for the purpose to detect
atrial activity, but to discriminate among different beat types (i.e. normal beat, ectopic
beat, and beats caused by left and right bundle branch block). The idea of beat classifica-
tion was preferred in order to reduce the number of false-positives owing to heart rhythm
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irregularity, although it did not produce a reliable performance. The proposed AF detector
was tested on the MIT-BIH Arrhythmia database and showed moderate detection results
of Se = 94.8 % and Sp = 92.5 %. The actual performance may even be lower, since the
algorithm was trained and tested on the randomly selected beats of the same database.

Du et al. (2014) proposed a simplistic approach to AF detection relying on 3 rules, of
which, one is dedicated to f-wave analysis. Six-second duration ECG episode is classified
as AF if the following rules are satisfied: the standard deviation of r intervals is larger
than 50 ms, the difference between the largest and the smallest r interval is more than
70 ms, and the number of f-waves in the TQ interval exceeds 1. The declared Se and
PPV values for the unspecified AF database were 94.1 % and 97.7 %, respectively. Even
though the reported performance is rather poor compared to existing algorithms relying
solely on r interval analysis, the performance may even be worse if the algorithm was
tested on the AFDB database, containing low quality ECGs with lots of ectopic beats and
movement artefacts. Furthermore, given that all three rules must be satisfied, it is highly
likely that AF episodes with increased heart rate will remain undetected due to a too short
TQ interval for f-wave identification.

An interesting AF detector was recently proposed by Asgari et al. (2015). The
algorithm is completely different from the previously published approaches, since it does
not require QRS detection, nor P-wave identification. Instead of these pre-processing steps
that are indispensable for most of the existing algorithms, stationary wavelet transform is
employed for feature extraction directly from the ECG signal. Peak-to-average power
ratio and low-energy entropy is computed for each wavelet coefficient. In such a way, 28
features are extracted, which are further used as the inputs to support the vector machine
classifier. When ECG segments of 30 s duration were used, the algorithm achieved Se of
97 % and Sp of 97.1 % for the AFDB database.

Table 3.2. Comparison of ECG morphology based AF detectors in terms of detection
performance on the MIT-BIH Atrial Fibrillation database (AFDB). Records “00735” and “03665”
are excluded in AFDB2, and 5 unspecified records are excluded in AFDB3. MITDB stands for the
MIT-BIH Arrhythmia database

Algorithm Window length Database Se, % Sp, % PPV , %
Slocum et al. (1992) na Generic 68.3 87.8 84.8
Couceiro et al. (2008) ą 12 beats AFDB2 93.8 96.1 na
Babaeizadeh et al. (2009) na AFDB2 92 na 97
Hayes and Teal (2013) na MITDB 94.8 92.5 na
Du et al. (2014) 6 s Generic 94.1 na 97.7
Ladavich and Ghoraani (2015) 7 beats AFDB3 98.1 91.7 79.2

1 beat AFDB3 89.4 89.5 72.4
Asgari et al. (2015) 30 s AFDB2 97.0 97.1 na

15 s AFDB2 97.0 96.8 na
10 s AFDB2 96.6 96.3 na

Needless to say, the algorithm was developed and tested on the same database
(AFDB) using a two-fold stratified cross-validation, which may be in favour towards
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the achieved performance. Moreover, since the algorithm relies on the assumption that
f-waves are present on the ECG signal during the episode of AF, the performance may
deteriorate when ECG lead without f-waves expressed is applied for the analysis (usually
any other lead than precordial lead V1). On the other hand, f-waves are quite often too
negligible to be recognizable even in the lead V1. Nevertheless, the elimination of QRS
detection and the ability to remain a relatively high performance, even for ECG segments
as short as 10 s, are notable strengths of the algorithm.

The performance of the aforementioned ECG morphology-based AF detectors is
summarized in Table 3.2.

3.2 Available devices for detection of atrial fibrillation

3.2.1 Non-invasive devices

According to the current guidelines, even if a patient is at high risk to develop AF,
the existence of AF has to be documented in order to start anticoagulant treatment. For
many years, a standard 12-lead electrocardiogram and Holter monitoring have been the
only available options for AF detection. However, rapid and continuous development of
electronics and communication technologies has given rise to various approaches to AF
monitoring and screening (Fig. 3.7). In this section, clinically tested non-invasive devices
are discussed.

Non-invasive 
devices

Holter 
monitors

Cardiac event 
recorders

Screening 
devices

Continuous loop 
recorders

Non-looping 
event recorders

Electrocardiographic
handheld devices

Plethysmography 
based devices

Smartphone‘s camera 
incorporating devices

Blood pressure monitor 
incorporating devices

Finger probe 
involving devices

Fig. 3.7. Classification of non-invasive devices for AF detection

Standard 12-lead electrocardiogram
A standard 12-lead electrocardiogram is the most widely available diagnostic tool,

currently accepted as the clinical reference for confirmation of AF existence. A twelve
lead ECG is a globally recognized technique, cost-effective, straightforward to perform
and relatively easy to interpret for trained physician. Therefore, the majority of AF cases
are still identified using a 12-lead ECG. The main disadvantage of this approach is a short
recording time, normally lasting just several seconds. As a result, severely prolonged AF
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is usually detected, whereas paroxysmal AF, especially in its early stages of development
may never be caught using this technology. For this reason, many other approaches to AF
detection have been proposed, which are currently on the way to widespread acceptance
(see Table 3.3).

Table 3.3. Comparison of clinically available devices and promising prototypes for AF detection

Device type Advantages Disadvantages
12-lead ECG Widely available; easy to inter-

pret
Short recording time; unsuitable
for paroxysmal AF detection

Holter monitor Reference for ambulatory ar-
rhythmia monitoring

Uncomfortable to wear; low pa-
tient compliance; offline data
analysis

Event recorder Does not require to be worn all
the time; effective when symp-
toms are experienced

Difficult to catch the begin-
ning of the arrhythmia event;
low specificity due to symptoms
misinterpretation

Loop recorder Continuous monitoring Low patient compliance; low
specificity due to ectopic beats

Handheld ECG Easy to use; low cost; high pa-
tient compliance

Unsuitable for brief AF detec-
tion

Modified blood
pressure monitor

Widely accessible; easy to use Low specificity; needs ECG for
diagnosis confirmation

Smartphone’s
camera

No additional hardware except a
smartphone is required

Low specificity; needs ECG for
diagnosis confirmation

Finger probe
photoplethys-
mography

Does not require electrodes; fast
to use

Low specificity; needs ECG for
diagnosis confirmation

Insertable loop
recorder

Continuous monitoring; accu-
rate evaluation of a total time
patient was in AF; no discom-
fort to the patient

Implantable; high cost

Cardioverter-
defibrillator

Continuous monitoring; no dis-
comfort to patient

Implantable, difficult to distin-
guish between different atrial
arrhythmias

Holter monitors
Holter monitoring has become a widely accepted technique for ambulatory ECG

recording since it was introduced by Norman Holter in 1961. The Holter monitor is a
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portable, usually 3-lead ambulatory device, capable of recording ECG continuously for
1 or 2 days during normal daily activities. Occasionally, 7 day, 2 week or even 1 month
Holter monitoring may also be prescribed. The Holter monitor is a valuable tool for clin-
icians, since it can be used not only for arrhythmia detection (including AF), but also for
the evaluation of drug effect with respect to AF recurrence. After Holter monitoring is
finished, recorded ECG signals have to be analysed offline by some dedicated software.
Despite this, AF detection software is continually improving, although automatically de-
tected AF episodes still have to be manually reviewed by a physician to ensure that flagged
episodes are not false-positives. To this day, 24 h Holter monitoring is the most commonly
prescribed for arrhythmia detection. However, there is an ongoing debate on monitoring
strategies that would be optimal for specific task, for instance, monitoring of AF recur-
rence after catheter ablation (Hindricks and Piorkowski, 2012; Charitos et al., 2012).

The major drawback of Holter monitoring is the adhesive electrodes and the device’s
connecting wires, which are very uncomfortable for many patients, eventually leading to
premature termination of recording (Calkins et al., 2012). Even more, some individuals
are allergic to adhesive electrodes, and therefore another monitoring technique should be
considered instead.

Cardiac event recorders
Cardiac event recorders are portable ambulatory devices similar to Holter monitors,

though usually smaller and lighter since only a single lead ECG is normally recorded. The
other notable difference is that cardiac event recorders do not continuously record the ECG
signal but are activated by the patient when symptoms occur, or are started automatically
when heart rhythm abnormalities are detected by the embedded algorithm. Two main
types of cardiac event recorders can be distinguished: continuous loop recorders and event
recorders.

Continuous loop recorders are continuously refreshing (recording and erasing) the
data. Data refreshing is stopped when the device is triggered by the patient or by the
automatic algorithm. In such a way, the ECG signal of the entire particular event and a
few minutes before and after the event are stored in the memory. Due to limited storage
capacity, only the beginning and the end of the episode are saved if arrhythmia lasts for a
longer period of time. Similarly to Holter monitor, the continuous loop recorder is con-
nected to adhesive electrodes via wires, although sticky patches, which are attached to the
body together with the device itself, are gaining increasing popularity. An example of an
adhesive-patch based device is the Zio-Patch (iRhythm Technologies, Inc, San Francisco,
California, US), currently being used for prolonged arrhythmia monitoring (Barrett et al.,
2014).

In contrast to loop event recorders, non-looping cardiac event recorders do not re-
quire to be worn all the time, but are temporarily attached to the body by the patient when
symptoms of arrhythmia are experienced. However, by using such a device it is problem-
atic to catch the very beginning of rhythm disturbance. Moreover, in some cases when
symptoms are severe (i.e. fainting) it may be difficult for the patient to correctly attach
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the device to the body. In addition, patient-activated event recorders will most likely miss
nocturnal and asymptomatic events.

Various studies have stated that cardiac event recorders are prone to false alarms
due to ectopic beats, since they share similar symptoms as AF. For example, in a small
study of 48 participants (50 % with AF), Muller et al. (2009) investigated AF detection
reliability using the external loop recorder 3100 BT by Vitaphone (3100 BT, Vitaphone,
Mannheim, Germany). When compared with Holter recordings, which showed a perfect
AF detection sensitivity, each patient in sinus rhythm on average had more than 5 false-
positive ECG recordings which led to a very low specificity of just 50 %. Comparable
results using this device were reported in another study (Velthuis et al., 2013), where
2923 ECG events were collected in 108 patients. Roughly 1200 flagged events were
classified as AF by the automatic algorithm, although only 56 were confirmed to be AF
after manual revision, which resulted in a Se and Sp of 95 % and 51 %, respectively.
Based on these observations, it can be concluded that the extremely low specificity is
undoubtedly unsatisfactory for daily use in clinical practice.

Electrocardiography-based screening devices
Handheld electrocardiogram recorders rely on the general idea of recording a sin-

gle lead ECG signal between two hands (thumbs, fingers, palms) from tens of seconds to
several minutes. Handheld ECG recorders have been proposed as alternative screening
tools to pulse palpation, and even offer many advantages compared to standard Holter
monitoring, most notably are low cost, easy to use and do not require adhesive electrodes
or connecting wires. Despite that various solutions for recording a single lead ECG have
been proposed in recent years, the majority do not involve an automatic AF detection.
Hence, only the devices that have been manufactured primarily for AF detection are dis-
cussed in this section.

Among the handheld AF screening devices, thumb-ECG recorders are gaining recog-
nition around the world, with several devices already being available on the market. For
example, the Zenicor thumb-ECG recorder (Zenicor Medical Systems AB, Stockholm,
Sweden) is spread over 250 clinics in Scandinavia. With the Zenicor device, a single lead
ECG is recorded for 10 s twice a day or when AF-related symptoms are present, and then
the signal is transmitted to a specified website via a mobile phone. In such a way, ECGs
are stored on the Internet, and instantly become available to a physician for manual eval-
uation, since the data can be accessed from any place at any time without the need of any
specific software, as long as there is an Internet connection.

The Zenicor handheld device has been involved in a large scale population screening
of 75–76 year-old inhabitants in Sweden (Friberg et al., 2012). In a related study by
Engdahl et al. (2013), 419 individuals with initial sinus rhythm plus two or more risk
factors for AF were enrolled. After just two weeks of screening, new paroxysmal AF was
found in 7.4 % of participants. Later, Svennberg et al. (2015) reported that intermitted
screening using a Zenicor device resulted in 4.3 times higher AF detection rates compared
to the standard 24 h Holter monitoring. In addition, based on the evidence of a new AF,
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anticoagulant treatment has been initiated in 93 % of these patients.
The AfibAlert AF monitor (Lohman Technologies, Sussex, Wiscons, US) is another

example of a commercially available thumb-ECG recorder. The AfibAlert acquires ECG
signal in two different ways: by pressing thumbs on the electrodes of the device or by
using wrist electrodes. ECG is recorded for 45 s, and then the signal is analyzed for AF
by an automated algorithm. The decision is immediately reported by an LED indicator.
If AF is suspected, the patient has to transmit ECG data to a physician for diagnosis
confirmation using transtelephonic transmission by holding the device to the phone. The
official website (www.lohmantech.com) declares AF classification ratio of 94 %, although
no clinical studies supporting this number are available at the moment.

The MyDiagnostick ECG recorder (Applied Biomedical Systems BV, Maastricht,
The Netherlands) was manufactured to record palm-ECG, rather than thumb-ECG. The
device has a form of a stick with metallic handles at both ends, serving as electrodes.
In order to acquire data for arrhythmia detection, the user has to grasp the metallic han-
dles and hold for 1 min. Subsequently, the same procedure has to be repeated two more
times. Once recorded, the ECG signal is analyzed for AF automatically using an em-
bedded AF detection algorithm, which computes an AF score based on the estimates of
signal periodicity and variability. The patient is informed about the analysis outcome via
an LED indicator. The MyDiagnostick was tested on a group of 181 participants, where
the majority of them were known to have AF. Hence, highly exaggerated AF prevalence
of 53 % was documented at the moment the measurements were acquired (Vaes et al.,
2014). Regardless of this, Se of 94 % and Sp of 93 % were obtained when following the
recommended protocol of three subsequent measurements.

Smartphone-based devices are future promising tools for screening of general health
status (Agu et al., 2013). In 2014, there were more than 1.7 billion smartphone users
around the world and tens of thousands of mobile health applications available for per-
sonal use (Mitchell and Le Page, 2015). It is very likely that sooner, rather than later,
smartphones incorporating health-care technologies will occupy a large part of screening
medical devices.

AliveCor Heart Monitor (AliveCor Inc., San Francisco, US) and CardiacDesigns
ECG Check (CardiacDesigns, Park city, Utah, US) provide phone cases with dry elec-
trodes in order to record a handheld single-lead ECG signal using an iPhone. By using
these devices, the ECG is obtained between the fingers of the left and right hands, which
are placed on the electrodes at the back of the iPhone’s case. Before each recording,
special arm relaxation instructions are strongly recommended to reduce noise level and
artifacts. Normally, ECG is recorded for approximately one minute and is transmitted
to the microphone of the iPhone using a modulated ultrasound signal, where it is further
demodulated and digitized. Finally, the ECG trace is sent to a cardiologist for manual
revision if an abnormal rhythm is identified by the automatic algorithm.

The pilot study by Lau et al. (2013) showed that by using the AliveCor Heart Mon-
itor it is possible to achieve a satisfactory performance (Se of 87 %–100 % and Sp of
96 %–97 %) when compared to a simultaneously recorded standard 12-lead ECG. Inter-
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estingly, the automated algorithm showed better AF detection results than each of the two
cardiologists who interpreted a device-recorded single-lead ECG. A larger study is un-
derway in order to assess the suitability of this technology for mass implementation for
preventive screening of individuals aged ě65 (Lowres et al., 2012a).

To sum up, a handheld device is a simple and fast way to check heart rhythm, since
measurements can be performed simply anywhere when symptoms of arrhythmia are ex-
perienced. Moreover, such devices can be used not only for personal reasons, but also for
a cardiologist or nurse to check whether the patient needs stationary 12-lead ECG for AF
diagnosis confirmation. On the other hand, a huge amount of data, which must be manu-
ally reviewed by a trained physician, is the unifying problem of handheld ECG recorders.
Therefore, even high specificity of the automatic algorithm would lead to several monthly
false alarms, if a screening device is used as recommended, for example, twice a day. In
addition, poor signal quality, rapid changes in baseline wander due to lost electrode con-
tact, and low amplitude of atrial activity are the other major obstacles making the analysis
of a handheld ECG especially challenging (Stridh and Rosenqvist, 2012).

Plethysmography-based screening devices
Recently, the photoplethysmography-based approach to AF detection has been pro-

posed by employing the inbuilt camera of an iPhone (Lee et al., 2013b). Since the camera
is available with most smartphones, and therefore no additional hardware is required,
such an approach could be among the cheapest alternatives for mass AF screening. The
method is based on the ability to record the photoplethysmography signal from a fingertip
by placing a finger directly on the camera for several minutes. After the pulsatile signal is
acquired, the video is processed in such a way that a one-dimensional pulse photoplethys-
mography signal is obtained, which is further used as a subject for peak detection. The
interval between the adjacent pulse peaks is assumed to represent a time interval between
two heart contractions (Fig. 3.8). Although rp series obtained from the photoplethysmog-
raphy signal does not always perfectly match r intervals of the ECG (Lu et al., 2009; Gil et
al., 2010), basically any algorithm suitable to detect AF in r interval series can be applied
instead.

Accordingly, Lee et al. (2013b) performed AF detection by utilizing a combination
of classical algorithms used for quantification of r variability and complexity. The iPhone
based prototype was validated in a group of 76 participants with diagnosed AF, who were
assigned for electrical cardioversion (McManus et al., 2013a). Since pulsatile signals were
recorded just before and immediately after cardioversion, the achieved high performance
(Se = 96 %, Sp = 97 %) should be taken with caution. Hence, additional studies involving
a larger population are needed to prove the method’s reliability. Although the idea is
promising, the potential problem may arise in situations when a particular patient has
impaired blood flow in his fingers. Moreover, thus far, no guidelines exist on interpretation
of the pulse photoplethysmography signal, therefore an ECG recording should inevitably
be taken to confirm the existence of AF.

Another type of instrument utilizing the principle of pulse photoplethysmography
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Fig. 3.8. Representation of AF in the photoplethysmography signal. Here a time interval rppmq is
a surrogate of rpmq interval obtain from the ECG

has been devised by Melys (Melys AFS, Columbia, Maryland, US). The portable device
employs a finger probe for recording blood pulsations in a fingertip of the index finger. The
pulse photoplethysmography signal is recorded for 30 s, and then a fast Fourier transform
based algorithm is applied to compute pulse rate variability. The device was validated in a
group of 594 participants, aged over 60 years who were not specifically cardiac patients at
that time (Lewis et al., 2011). The study found a perfect AF detection sensitivity (100 %)
and specificity of 91.9 % for this device, where all 53 false-positives were caused by the
presence of ectopic beats. Since the presence of AF must be confirmed by a standard 12-
lead ECG, the authors of the study concluded that the Melys AF monitor is suitable just
for AF screening but not for diagnostic purposes.

Given that the oscillometric principle of self-screening blood pressure devices in-
volves the analysis of a pulsatile signal, which in turn, represents pressure oscillations in
the sphygmomanometer cuff, the same signal can be employed for the evaluation of pulse
rhythm irregularity. Such an approach is especially attractive for mass screening, since
home blood pressure monitors are widely spread among the hypertension patients who
are at a high risk to develop AF. The Microlife BP A200 (Microlife, Microlife AG, Wid-
nau, Switzerland) and the Omron M6 (Omron, Omron Healthcare Co., Kyoto, Japan) are
the most widely distributed blood pressure monitors with an integrated function to detect
AF. In both devices, AF detection is performed during cuff deflation by calculating the
mean and the standard deviation of 10 consecutive pulse intervals. Then, the irregularity
index is computed by dividing the standard deviation by the mean. To reduce the influ-
ence of ectopic beats, pulse intervals that are 25 % lower and 25 % greater than the mean
are removed from the pulse interval sequence prior to computation of the irregularity in-
dex. The only notable difference between these two devices lies in the recommendations
– three consecutive measurements should be performed using the Microlife BP A200,
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whereas the only one is requested for the Omron M6.
Several studies have investigated the feasibility of the Microlife BP A200 blood

pressure monitor to detect AF. The AF detection performance differed only slightly be-
tween the studies, and depended primarily on the number of consecutive measurements
taken for decision making. Fairly high sensitivity of 92–100 % and specificity of 89–
97 % have been obtained when three measurements were performed (Wiesel et al., 2009;
Stergiou et al., 2009; Marazzi et al., 2012; Wiesel et al., 2014).

At least two studies have been conducted in order to directly compare the perfor-
mance of the Microlife BP A200 and the Omron M6 devices (Marazzi et al., 2012; Wiesel
et al., 2014). Interestingly, both studies strongly contradict each other, i.e., Marazzi et
al. (2012) reported a comparable performance of both devices, although the Omron M6
turned out to be slightly more accurate and more comfortable to use than the Microlife BP
A200. In that study, a direct comparison of these devices to ECG recordings showed sen-
sitivity/specificity of 100/94 % for the Omron M6 device, and 92/97 % for the Microlife
BP A200. On the contrary, Wiesel et al. (2014) later claimed that the Omron M6 monitor
is considerably less sensitive (Se = 30 %). The authors speculated that such a huge differ-
ence in sensitivity could be caused by an unusual patient group studied by Marazzi et al.,
which did not represent the typical AF patient in the general population.

Although larger and better arranged studies are needed to prove the feasibility of
the Omron M6 device to detect AF, pretty good results that were consistently achieved
using the Microlife BP A200 offer a more convenient approach for mass AF screening.
Nevertheless, due to the simplicity of currently implemented algorithm for AF detection,
the device is prone to false alarms during ectopic beats or highly variable pulse rate. For
instance, sinus arrhythmia, which is associated with rapidly changing heart rate, is very
common in the younger population, thus it is no surprise that even 18 % of measurements
using the Microlife BP A200 monitor appeared to be false positives when 13–18 year old
teenagers were involved in the study (Cheung and Cheung, 2015). For this reason, device-
specific guidelines should be introduced in order to better specify when a particular patient
should consult a physician. For example, Wiesel et al. (2007) suggested that the number
of false-positives will be reduced if two additional measurements are taken after the initial
pulse irregularity is detected.

3.2.2 Invasive devices

To this day, invasive devices are the only available technologies providing a conve-
nient way of continuous arrhythmia monitoring. A block diagram illustrating the basic
types of devices used for AF monitoring in clinical practice is shown in Fig. 3.9.

Insertable loop recorders
Insertable loop recorders are invasive leadless devices used exclusively for diagnos-

tic purposes. Earlier, insertable loop recorders have been proven to be useful tools for
diagnosing recurrent syncope events when the patient temporally loses consciousness and
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Fig. 3.9. Classification of invasive devices suitable for AF detection

then recovers spontaneously (Kanjwal et al., 2011). In case of AF, the insertable loop
recorder plays a special role in some specific situations, for example, when evaluating the
success of AF treatment procedures (i.e. radiofrequency ablation), assessing the efficacy
of rate control therapy, or aiming to detect asymptomatic paroxysmal AF episodes after
cryptogenic ischemic stroke.

Currently, several insertable loop recorders with an embedded AF detection algo-
rithm are available on the market for clinical use. The most commonly used in clinical
practice are the Reveal XT (Medronic Inc., Minneapolis, Minnesota, US), the SJM Con-
firm (St, Jude Medical, St. Paul, Minnesota, US) and the Sleuth (Transoma Medical Inc.,
St. Paul, Minnesota, US). These cardiac monitors include two built-in electrodes suit-
able for recording a single bipolar ECG lead. The device is normally inserted under the
skin into the subcutaneous tissue, thus normally has a thickness of several millimeters and
weighs less than 20 grams. Similarly to an external loop recorder, implantable equiva-
lent also involves looping memory, and can operate either in an automated self-activation
mode or can be activated by the patient with a hand-held activator when symptoms are
experienced.

The Reveal XT insertable loop recorder is capable of identifying both atrial tachy-
cardia and AF on the basis of the Poincaré plot analysis (Sarkar et al., 2008). In addition,
the device provides the possibility to be programmed to detect a desired duration of ar-
rhythmia events. Therefore, a partial freedom is permitted to the physician to manipulate
between arrhythmia detection specificity and sensitivity by simply changing the length of
the shortest episode to be detected.

The Reveal XT insertable loop recorder has been investigated in various studies. In
a comprehensive study by Hindricks et al. (2010), the sensitivity and specificity of the Re-
veal XT were found to be 96.1 % and 85.4 %, respectively, when compared to 46 h Holter.
Despite poor specificity, AF burden, representing a proportion of time the patient was in
AF, correlated very well with the reference annotations obtained from the Holter record-
ings (Pearson’s correlation: 0.97). The authors reported that inappropriate detection was
caused mostly due to ectopic beats. In the same study, the influence of AF episode length
on detection performance was evaluated as well. The minimum duration of detectable AF
episodes was adjusted to 2, 6, 10 and 20 min. The sensitivity and positive predictive value
were found to be 88.2 % and 73.5 %, respectively, for ě 2 min AF episodes, however
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increased up to 92.1 % and 79.6 %, respectively, for ě 6 min AF episodes. It should be
noted that regarding an unacceptably low specificity, a minimum duration of 6 min is the
preferred in the majority of clinical studies.

In several studies, electrogram signals have been manually reviewed in order to
identify the main causes of false-positives. For instance, Montenero et al. (2004) reported
that the Reveal XT device was triggered by atrial and ventricular premature beats in more
than 30 % of all cases. Later, Eitel et al. (2011) provided a more detail view of false-
positives causing factors. These were myopotentials due to activity of pectoral muscle
(35 %), atrial and ventricular premature beats (15 %), misdetection of QRS complex (4 %)
and T-wave over-sensing (1.5 %). The authors of the study concluded that insertable
loop recorders can arguably detect more AF episodes than Holter recorder, however, the
frequent false-positives reduce the practical value of this device.

In summary, many clinical studies have shown continuous AF monitoring using in-
sertable loop recorders to be superior; even compared to a very aggressive strategies of
intermitted monitoring (see Sec. 3.3.2). Hence, insertable cardiac monitors are gaining
popularity and have been proven to be useful in specific situations. However, mass im-
plantation of invasive devices is unrealistic due to high costs. The other notable drawback
is that the device has to be replaced after 2–3 years of usage, although emerging energy
effective hardware and software solutions may theoretically extend the working time of
the device up to 10 years (Andersson et al., 2015).

Implanted devices
Implanted devices, such as pacemakers, cardioverters-defibrillators and biventricu-

lar pacing (cardiac resynchronization therapy), are devices that primary serve for a ther-
apeutic purposes, however, they can also be programmed to detect arrhythmias including
AF. Implanted devices have the ability to an record intra-atrial electrogram signal directly
in the heart via an implanted atrial lead. In contrast to surface ECG, intra-atrial electro-
gram recorded in the atria mostly represents atrial contractions, while ventricular activity
has usually a lower amplitude. Thus, implanted devices with the atrial lead, not only make
possible a continuous detection of episodes of rapid atrial rate, but also provide the possi-
bility to characterize individual episodes with respect to the atrial rate during a particular
episode.

Since the dual-chamber cardioverter-defibrillator also has a lead which is placed in
the right ventricle, information of both the intra-atrial and intra-ventricular signal is in-
volved in the process of atrial tachyarrhythmia detection. In a small study by Swerdlow
et al. (2000), a dual-chamber cardioverter-defibrillator Medtronic Jewel AF (Medtronic,
Minneapolis, US) was investigated in terms of its ability to detect AF. It showed that 98 %
of 132 device-detected AF episodes, and 88 % of 190 atrial tachycardia episodes were
correct. All false-positives occurred due to over-sensing of far-field ventricular activity
(see Fig. 3.10) which, in turn, made an unstable duration between the adjacent atrial ac-
tivity waves. It is noteworthy that all false-positive episodes lasted less than 5 min, with
the mean duration of 2.6 ˘ 2.0 min for atrial tachycardia and 3.2 ˘ 1.6 min for AF, re-
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spectively. This observation suggests that the rate of false-positives increases when an
arrhythmic event is of a short duration. Although AF can be discriminated from atrial
tachycardia or atrial flutter relying on atrial rate and irregularity of atrial events, Swerd-
low et al. suspected that some of the AF episodes were incorrectly classified as atrial
tachycardia.
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Fig. 3.10. Far-field ventricular activity (R-wave) oversensing in the intra-atrial electrogram

As mentioned above, inappropriate AF detection using dual-chamber cardioverters-
defibrillators may occur due to far-field ventricular activity in the intra-atrial electrogram
signal. In some individuals, especially when the atrial lead is positioned outside of the
right atrial appendage, the amplitude of ventricular activity can be very large, thus, in
order to avoid over-sensing of far-field ventricular activity, either the atrial wave detection
sensitivity has to be reduced or post-ventricular atrial blanking has to be prolonged (Fung
et al., 2009). For this reason, in many clinical studies an episode is chosen to be flagged as
atrial tachyrhythmia when the atrial rate reaches at least 190 beats per minute for ě 6 min.
Moreover, rapid atrial rate can be caused by other supraventricular tachycardias, such as
atrial flutter or atrial tachycardia, or can even be a result of bursts of atrial premature beats,
thus even manual revision of the intra-atrial signals may not be enough to distinguish
between AF and other arrhythmias.

3.3 Ambulatory monitoring of atrial fibrillation

3.3.1 Electrocardiogram lead systems for ambulatory monitoring of atrial fibrillation

As discussed previously, commercial devices tend to produce false-positives due
to electromyographic noise, motion artifacts and ectopic beats (Harris et al., 2012), thus
forcing the cardiologist to manually review computer-detected arrhythmic episodes; this
shortcoming is particularly pronounced when brief AF episodes are of interest to ana-
lyze. It is well-known that manual review of long-term ECG recordings is exceedingly
time-consuming, and unreliable at times (Mant et al., 2007), it is essential to improve the
performance of such devices. One way to do this is to employ a lead system which in-
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creases the amplitude of the atrial activity for monitoring of AF. When the conventional
12-lead ECG system is applied, the highest amplitude of atrial activity is observed in lead
II during sinus rhythm, while precordial lead V1 produces the highest amplitude during
AF (Langley and Murray, 2004).

While the standard 12-lead ECG system, as well as its reduced-lead modifications,
are focused on ventricular activity, the lead systems are not optimal for atrial activity anal-
ysis. Due to the fact that atrial amplitude is much smaller than ventricular amplitude, an
ECG lead with an increased atrial amplitude helps to better discriminate between vari-
ous arrhythmias of atrial origin (i.e., atrial tachycardia, atrial flutter, AF), as well other
arrhythmias, such as wide QRS complex tachycardia (Bakker et al., 2009; Mizuno et al.,
2014). Moreover, enhanced atrial activity facilitates the estimation of the atrial fibrilla-
tory rate, which offers clinical value when selecting a treatment strategy (Platonov et al.,
2014).

So far, no specialized ECG lead system is routinely used in clinical practice for
ambulatory monitoring of AF. Therefore, a standard 3-lead Holter ECG monitoring is
typically applied, even though Holter monitors reduce the patients quality of life and have
lower patient compliance (Roten et al., 2012; Turakhia et al., 2013). For this reason,
single lead ECG monitors are considered as a promising alternative for long-term AF
monitoring (Turakhia et al., 2013). However, single lead ECG monitors do not employ
electrode placement that is optimized for analysis of atrial activity.

A number of studies have proposed modifications of the standard 12-lead ECG sys-
tem by placing some electrodes closer to the atria in order to enhance the atrial information
(Ihara et al., 2007; Husser et al., 2007). Further enhancement may be achieved by body
surface potential mapping where the electrodes are arranged as a grid around V1 (Guillem
et al., 2009). While multi-lead systems can be advantageous for analysis of atrial activa-
tion patterns, none of the above-mentioned solutions are easily transferred to a reduced
ECG lead system.
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Fig. 3.11. Electrocardiogram lead configurations suitable for ambulatory AF monitoring: a) EASI
lead system, b) Lewis lead system, c) the lead system by Ihara et al., d) the lead system by Husser

et al. (only front side is shown). Note that EASI and Lewis lead systems involve bipolar leads,
whereas Ihara et al. and Husser et al. leads are obtained with respect to Wilson’s central terminal

A reduced ECG lead system for atrial activity enhancement was proposed in the very
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first book of electrocardiography by Sir Thomas Lewis (Lewis, 1913), however, it did not
receive proper attention. The Lewis lead system requires that two out of six electrodes are
placed directly on the pectoral muscle where arm movement artefacts are likely to occur.
In order to avoid leads on the chest muscles, the lead ES of the EASI lead system (Dower
et al., 1988) can be employed, since it is potentially more immune to noise and offers
a good projection of atrial activity. However, there is a lack of studies that examine the
noise immunity of different ECG lead systems. The above mentioned ECG lead systems
suited for atrial activity enhancement are illustrated in Fig. 3.11

3.3.2 Atrial fibrillation monitoring strategies

As stated previously, AF detection in early stages is challenging due to short dura-
tions, asymptomatic and rarely occurring arrhythmia episodes. Therefore, AF is usually
identified during planned examinations of health status or when the patient feels strongly
expressed symptoms. Currently, pulse-palpation followed by 12-lead ECG or 24 h ambu-
latory Holter monitoring is recommended as a standard for AF screening in individuals
over 65 years. However, Holter monitoring, let alone 12-lead ECG, is usually insufficient
to detect paroxysmal AF, therefore various other techniques can be considered instead
(Fig. 3.12). In addition, when selecting the most appropriate strategy for AF detection,
such factors as cost effectiveness and patient compliance are equally important to consider.
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Fig. 3.12. Current scheme for selecting appropriate approach for AF detection in symptomatic
patients. Adapted from Rosero et al. (2013)

Various studies have been conducted for the purpose to compare a standard strategy
based on 12-lead ECG or 24 h Holter monitoring to potentially more beneficial AF detec-
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tion strategies (Charitos et al., 2012). For example, a large study involving thousands of
75–76 year-old individuals in Sweden revealed that using a short-term intermittent screen-
ing approach with a handheld Zenicor ECG recorder (at least 2 times a day for two weeks),
newly detected an AF rate of 7.4 % (Engdahl et al., 2013). On the contrary, the strategy
of a standard 12-lead ECG was associated with just 1–2 % of newly diagnosed AF cases
in that particular population (Fitzmaurice et al., 2007; Engdahl et al., 2013).

Nowadays, there is an ongoing intensive debate on the selection of effective strate-
gies for AF detection after cryptogenic ischemic stroke; both intermittent screening and
continuous monitoring are considered. In a study by Gaillard et al. (2010), patients after
stroke or transient ischemic attack were screened for one month using a patient-activated
event recorder. Only those patients who got a negative result of initial 24 h Holter mon-
itoring were prescribed for screening (a single „30 s duration ECG recording per day).
Somehow surprisingly, even 9.2 % of new paroxysmal AF cases were identified using such
a simplistic screening approach. In addition, the authors emphasized that transtelephonic
ECG monitoring costs were almost a third lower compared to 24 h Holter monitoring.

Stroke patients are predisposed to have brief AF bursts, thus intermittent screening
may result in lower than actual AF detection rates. Hence, continuous monitoring using
either invasive or non-invasive technologies has been applied in several studies. For ex-
ample, Gladstone et al. (2014) found that monitoring for 1 month after ischemic stroke
using non-invasive event-triggered loop recorder can improve paroxysmal AF detection
rate by more than 5 times compared to 24 h Holter monitoring. In another study by Sanna
et al. (2014), patients after cryptogenic ischemic stroke were prescribed to continuous
AF monitoring using an insertable loop recorder. In that study, half a year of monitoring
yielded to 6-fold higher AF detection rate compared to 24 h Holter monitoring.

In another, slightly differently arranged study, three different strategies to detect
AF in the stroke unit have been investigated (Rizos et al., 2012). All patients who had
been admitted to a stroke unit with acute ischemic stroke or transient ischemic attack per-
formed 24 h Holter monitoring, continuous alarm-based real-time ECG monitoring, and
continuous ECG monitoring with offline analysis using specialized software (SRAclinic,
Apoplex Medical Technologies, Pirmasens, Germany). The study demonstrated that only
a third of all AF events were detected by 24 h Holter monitoring, two-thirds using alarm
based continuous ECG monitoring and almost all AF cases (92.7 %) were detected with
an automated software. Despite software-detected AF episodes had to be reviewed by a
cardiologist, and a relative large false alarm rate of 18 % was documented, the endpoint of
the study was that continuous ECG monitoring should be performed instead of classical
24 h Holter monitoring, even in the stroke unit.

Charitos et al. (2012) conducted a comprehensive study where various strategies of
intermitted AF monitoring (24 h, 7, 14 and 30 days Holter monitoring) were investigated
in terms of the likelihood to detect at least a single paroxysmal AF episode during a period
of one year. The study was based on mathematical simulations using data of invasive
continuous monitoring from 647 patients. Simulation results showed (see Fig. 3.13 a) that
in order to identify paroxysmal AF in half of the monitored patients, on average, four
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random tests of 24 h Holter monitoring should be prescribed. To achieve AF detection
sensitivity of 80 %, at least 3 random tests of 30 day, 5 tests of 14 day or 7 tests of 7 day
Holter monitoring are needed.
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Fig. 3.13. a) Atrial fibrillation detection sensitivity as a function of random monitorings using
different Holter-based strategies. b) Gain in AF detection when continuous monitoring is applied

instead of 24 h Holter monitoring. Adapted from Charitos et al. (2012)

Charitos et al. also made an essential point regarding temporal distribution of parox-
ysmal AF episodes. They showed that it is considerably more challenging to detect AF
using the strategy of intermittent monitoring when temporal dispersion of AF episodes
is low, i.e., AF density is high (see Fig. 3.13 b). It was clearly shown that the currently
recommended 24 h Holter monitoring can be completely ineffective in some cases, thus
more intensive monitoring is indispensable in order to improve AF detection rates. On the
other hand, since the study excluded AF episodes shorter than 5 min, the chances to detect
even a single paroxysmal AF episode during the monitoring period will be increased if a
high performing algorithm for brief AF detection is applied.

These findings suggest that conventional 24 h Holter monitoring, although still a
standard for AF detection in most countries, is far from being an effective solution for AF
detection. However, to this day, there is no unified agreement how each different situation
(opportunistic AF screening, evaluation of cardioversion/catheter ablation success, AF
detection after cryptogenic stroke, monitoring of drug effect) should be handled in order
to achieve the highest efficiency of AF detection.

3.4 Characterization of atrial fibrillation

3.4.1 Temporal organization of paroxysmal atrial fibrillation

In today’s clinical practice, a qualitative approach for the confirmation of AF pres-
ence is preferred (yes or no AF). However, evolving technologies for extended AF mon-
itoring enable the possibility to change the prevailing concept of a qualitative AF assess-
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ment to a quantitative (the amount of AF) approach. A parameter of AF burden is being
increasingly applied for quantitative AF evaluation and is expressed as a proportion of
time the patient is in AF:

BAF “
TAF

T
, (3.1)

where TAF is the accumulated time the patient was in AF, and T is the total monitoring
time. The parameter BAF takes values between 0 and 1, where 0 indicates that no AF was
observed, whereas 1 denotes that the patient was in AF throughout the entire monitoring
period.

Given that AF burden does not provide information about temporal AF behavior,
Charitos et al. proposed a parameter under the name of AF density for the evaluation of
temporal distribution of paroxysmal AF episodes. AF density is defined as:

DAF “ 2

ş1
0 |F pp,BAF q ´ p|dp

1 ´ BAF
, (3.2)

where the upper part of the equation corresponds to actual AF burden development from
the uniform (AF during the entire monitoring period) AF burden development. Here p

is a proportion of burden BAF , 0 ď p ď 1. The component F pp,BAF q represents the
minimum continuous time required for the development of the proportion p of the total
burden BAF and is defined as

F pp,BAF q “
T pp,BAF q

T
. (3.3)

Values of AF density are also distributed within the interval of [0, 1]. Values closer
to 0 indicate that AF is uniformly spread during the monitoring period, whereas values
closer to 1 stand for a high aggregation of AF episodes. The AF density equal to 1 is
obtained when a single AF episode, independently of AF episode length, is observed
during the entire monitoring time.

Since paroxysmal AF may take various temporal patterns (Fig. 3.14), temporal AF
recurrence may be of interest for drug management or evaluation of thromboembolism
risk based on the duration and temporal distribution of paroxysmal AF episodes. More-
over, quantitative evaluation of temporal AF recurrence may be beneficial for relating AF
episodes to arrhythmia provoking events (physical activity, time of the day, meal, etc.).
Such information can be important for understanding specific factors resulting in evolv-
ing AF burden. In addition, the total number of paroxysmal AF episodes may also be of
some interest, since it provides information on the ability of the heart to self-terminate AF
episodes.

3.4.2 Analysis of atrial activity during atrial fibrillation

In recent years, extraction of atrial activity in ECGs recorded during AF has received
considerable research attention. By canceling the ventricular activity, a connected atrial
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signal can be produced, which is analyzed with respect to f-wave repetition rate and mor-
phology; as well as other properties (complexity, organization, etc.). The development
of methods for ventricular activity cancellation has helped to spawn numerous clinical
studies in which AF rate (or frequency) is assessed (Bollmann et al., 2006; Schotten et
al., 2012; Platonov et al., 2014). The atrial fibrillatory rate is of special interest, since it is
closely linked to the fibrillatory cycle length, which is related to the atrial refractory period
during AF (Haissaguerre et al., 2007). Since the atrial fibrillatory cycle length is gradually
getting longer before AF termination, a quantitative measure of the fibrillatory rate may
potentially be used for the prediction of spontaneous AF behavior and therapeutic success,
as well as for non-invasive characterization of atrial substrate.

Probably because of its ease of implementation, by far the most widely used method
for ventricular activity cancellation is average beat subtraction (ABS) (Slocum et al., 1992;
Holm et al., 1998; Bollmann et al., 1998). The averaged heart beat that represents ven-
tricular electrical activity is obtained from an ensemble of time aligned QRST complexes,
and then is subtracted from each beat in the ECG signal (see Fig. 3.15). However, it is
well-known that ABS is unable to handle changes in morphology, as it causes the result-
ing atrial signal to contain QRST-related residuals (Xi et al., 2003). The occurrence of
a single ectopic beat is yet another particularly problematic situation, as the ectopic beat
becomes the residual itself.

Various ABS-based techniques have been proposed to mitigate the problem of QRST
morphology variations due to ectopic beats and respiration. For example, provided that
several ectopic beats are present, an eigenvalue-based method was devised for their can-
cellation prior to ABS (Martı́nez et al., 2010). Assuming that a multi-lead ECG recording
is available, spatiotemporal QRST cancellation was proposed for the purpose of handling
gradual changes in the electrical axis of the heart (Stridh and Sörnmo, 2001). In this ap-
proach, an averaged QRST complex is obtained by combining morphology information of
heart beats in adjacent leads, therefore variations in QRST shape are better handled than
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Fig. 3.15. Explanation of QRST cancelation using average beat subtraction technique

using a single ECG lead based ABS.
Another group of ventricular activity cancellation techniques explores the assump-

tion that atrial and ventricular activity are generated by different electrical sources, so that
the surface ECG can be viewed as a linear sum of the sources. Both principal compo-
nent analysis and independent component analysis have been proposed to separate signal
sources. A principal component analysis based method was designed for the analysis of
Holter data with a reduced number of leads (Castells et al., 2005a). The principal com-
ponents are grouped into three subspaces, which account for ventricular activity, atrial
activity and noise-related activity. An advantage of principal component analysis is its
ability to follow variations in QRST morphology, however, its performance is highly de-
pendent on the accuracy of the algorithm for identifying the atrial subspace. A variation
on the principal component analysis theme is the method which involves adaptive singu-
lar value decomposition for QRST cancellation in single lead ECGs, which was found to
perform better than ABS (Alcaraz and Rieta, 2008).

Independent component analysis based methods can be used for the extraction of
atrial activity in multi-lead ECGs (Rieta et al., 2004; Castells et al., 2005b; Kao et al.,
2005; Llinares and Igual, 2009). Crucial issues when using these methods are the iden-
tification of the component(s) with atrial activity and the challenge to analyze long-term
recordings. This type of identification was improved by using spectral information (Llinares
et al., 2010), however, the method requires a prior knowledge of the AF frequency. In this
method, a frequency estimate was determined from the TQ interval, consequently imply-
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ing that performance is bound to deteriorate as the heart rate increases.
Yet another method to cancel ventricular activity is to employ adaptive filtering, with

which a time-varying transfer function is estimated between two ECG leads. The initial
idea of this approach was proposed by Thakor and Zhu (1991). Based on their proposal,
atrial and ventricular electrical activity is separated by using an adaptive recurrent filter
in which an impulse-like signal is applied to the reference input for the purpose to cancel
ventricular activity in the other ECG lead. However, this type of adaptive filter is effective
only when QRST morphology is stable over time (Cesarelli et al., 1998). Later, a concep-
tually similar approach of adaptive filtering was implemented using an Elman time delay
artificial neural network (Vásquez et al., 2001). Although the use of iteratively trained
recurrent neural network offers the advantage of adapting to changes in QRST morphol-
ogy, this neural network is associated with a slow and complex training process, and its
convergence is strongly related to the quality of training data.

The unifying limitation of the above discussed techniques for atrial activity extrac-
tion is that the performance deteriorates when atrial activity (f-waves) is of low amplitude.
Thus f-wave analysis is feasible just in a few ECG leads, positioned near to the atria, i.e.,
precordial leads V1 and V2 of 12-lead ECG system. Since these leads are not normally in-
volved in ambulatory monitoring, the f-wave amplitude can be insufficiently large enough
to perform a reliable f-wave analysis.

3.5 Conclusions of the chapter

1. In order to detect paroxysmal AF at the beginning of arrhythmia development, con-
tinuous long-term monitoring, lasting from several weeks to months, should be per-
formed. Therefore, it is essential to develop a low-complexity AF detector, suitable
for implementation in a battery-powered device.

2. Atrial fibrillatory signal (f-waves) has potential to be used as a biomarker for pre-
diction of AF behaviour. Accordingly, reliable techniques for f-waves extraction
using a minimal set of ECG leads are of special importance in order to characterize
fibrillatory activity in ambulatory ECG recordings.

3. The majority of existing methods for AF detection explore ventricular activity ir-
regularity through parameters which reflect variability, randomness and complexity.
However, such methods are unsuitable for detection of brief paroxysmal AF, since
a window length of at least 30 s is usually required to reduce the number of false
alarms due to other irregular rhythms. For this reason, it is essential to develop an
AF detector that utilizes the analysis window of just several beats, thus enabling the
detection of brief AF.

4. The majority of new AF cases are still diagnosed using the standard 12-lead ECG
technology. Given that brief paroxysmal AF is unlikely to be detected in a single
short-term screening, a reduced ECG lead configuration, optimized for prolonged
monitoring of AF is highly desirable.
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5. Although commercial AF monitors have been on the market for some time, no
information is available on their ability to detect brief paroxysmal AF; probably
due to the lack of ECG databases containing short AF episodes. Therefore, it is
important to propose a solution for generating realistic ECG signals with brief AF.
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4 PROPOSED METHODS FOR DETECTION OF PAROXYSMAL ATRIAL FIB-
RILLATION

4.1 A conception of system for detection of brief episode atrial fibrillation

In this chapter, novel solutions for paroxysmal AF detection in ambulatory ECG
recordings are introduced: 1st stage AF detector (Petrėnas et al., 2015b), fibrillatory activ-
ity (f-waves) extraction algorithm (Petrėnas et al., 2012), 2nd stage AF detector (Petrėnas
et al., 2015c), and ECG electrode placement (Petrėnas et al., 2015a). Each of the proposed
solutions can be used either separately, or can be combined into a unified automated sys-
tem capable to detect brief AF episodes, and provide information on fibrillatory activity
(see Fig. 4.1).
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Fig. 4.1. Conception of an automated system for ambulatory detection of brief episode
paroxysmal AF

The 1st stage AF detector is an r-based AF detection algorithm whose structure is
well-adapted to implementation in a battery-powered device for use in continuous long-
term monitoring applications. Given that existing r-based approaches for AF detection
are sensitive to false alarms, due to other irregular rhythms, the proposed detector in-
cludes blocks for ectopic beat filtering, and bigeminal suppression to alleviate this prob-
lem. Moreover, with one parameter, the performance can be tuned to put more emphasis
on avoiding false alarms due to non-AF arrhythmias or more emphasis on detecting brief
AF episodes; however, in expense of reduced specificity. Considering its high sensitiv-
ity, such a detector can be employed in the first-stage for the purpose to find possible AF
episodes and activate the following blocks that are designated to atrial activity analysis.

In order to enable a reliable detection of brief AF episodes, a more advanced AF
detector is employed, which involves morphologic information (atrial fibrillatory activity)
to determine in further detail whether the detected episodes are correct or not. Atrial fib-
rillatory activity is extracted from the surface ECG by using an echo state neural network,
which estimates the time-varying, nonlinear transfer function between two ECG leads –
one lead with atrial activity and another lead without. The obtained fibrillatory signal can
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be used not only for AF detection, but also for the purpose to characterize AF profile, i.e.,
in terms of fibrillatory frequency.

The 2nd stage AF detector is based on four parameters characterizing r interval
irregularity, P-wave absence, f-wave presence and noise level, of which the latter three are
determined from a signal produced by an echo state network. The parameters are used
for fuzzy logic classification where the decisions involve information on prevailing signal
quality; no training is required. Since morphologic analysis is computationally much
more costly, the second-stage detector should preferably be implemented in a server or a
smartphone.

The proposed method for fibrillatory activity extraction requires two ECG leads with
and without atrial activity expressed, thus a reduced ECG lead configuration was derived
to meet these requirements. The proposed ECG lead configuration was obtained on the
basis of ECG lead configuration introduced by Sir Thomas Lewis in 1913. However,
the original Lewis lead system employs ECG leads, placed directly on the right side of
the chest. Therefore, a modified Lewis lead system was derived which is better suited
for ambulatory applications, since the electrodes are placed in areas with less muscle. It
should be noted that the proposed methods are not restricted to the use of the modified
Lewis lead system and any lead system involving ECG lead with negligible fibrillatory
activity can be employed instead. For example, in the case of a standard 12-lead ECG,
either V5 or V6 can be used as a reference lead with negligible f-waves.

Each of the proposed solutions are described in more detail in the sections below.

4.2 Low-complexity method for detection of paroxysmal atrial fibrillation in con-
tinuous monitoring applications

The proposed AF detector is based on the observation that AF episodes have in-
creased r irregularity and are usually associated with increased heart rate. A block dia-
gram of the detector is shown in Fig. 4.2, where each of the processing blocks is described
in the following text.
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Fig. 4.2. Block diagram of the proposed AF detector based on r interval analysis
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4.2.1 Pre-processing

The occurrence of sporadic ectopic beats can be especially problematic when short
time r series are analyzed and, therefore, it is desirable to introduce techniques which can
handle such situations. Preliminary tests showed that the simple 3-point median filter is
useful for reducing the influence of ectopic beats in the r series. This filter is defined by

rmpmq “ mediantrpm ´ 1q, rpmq, rpm ` 1qu, (4.1)

where rpmq denotes the length of the m:th r interval (whose unit is in seconds). Median
filtering is also useful for rejecting outlier r intervals due to, i.e., missed QRS complexes.
Higher-order median filters were found to be less useful since they smooth AF episodes
to such a degree that episodes with low r irregularity remain undetected.

Since the heart rate usually increases during AF episodes, an estimate of the mean
r interval has to be determined, and employed as a feature in the AF detector, cf. (Lake
and Moorman, 2011; Langley et al., 2012). Here, the traditional ensemble averager is
replaced by the exponential averager to better track the “trend” in the r interval series.
The exponential averager is defined by (Sörnmo and Laguna, 2005)

rtpmq “ rtpm ´ 1q ` βprpmq ´ rtpm ´ 1qq, (4.2)

where β (0 ă β ă 1) determines the degree of smoothing, i.e., the low-pass cut-off fre-
quency. Since the exponential averager in (4.2) has a nonlinear phase, forward–backward
filtering is performed to achieve a linear (null) phase.

4.2.2 Irregularity of ventricular activity

In a sliding detection window of length M , located at time m, the number of all pair-
wise r interval combinations differing more than γ seconds is determined, and normalized
with its maximum value MpM ´ 1q{2, i.e.,

Gpmq “
2

MpM ´ 1q

M´2
ÿ

j“0

M´1
ÿ

k“j`1

Hp|rpm ´ jq ´ rpm ´ kq| ´ γq, (4.3)

where Hp¨q is the Heaviside step function and 0 ď Gpmq ď 1. It is noted that Gpmq is
partially based on the same principle, as is sample entropy estimation (Lake and Moorman,
2011).

The primary feature of r irregularity is provided by the ratio between a smoothed
version of Gpmq and the r interval trend rtpmq in (4.2),

Itpmq “
Gtpmq

rtpmq
, (4.4)

where Gtpmq is obtained by exponential averaging of Gpmq. The division by rtpmq

is motivated by the wish to emphasize r irregularity at higher heart rates. It should be
noted that Itpmq is close to 0 for regular rhythms, since the difference between pairs of r
intervals is usually smaller than a properly chosen γ, whereas Itpmq approaches 1 during
AF, see the examples in Fig. 4.3.
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Fig. 4.3. The output of each building block of the proposed detector is illustrated for a) an AF
episode surrounded by ectopic beats and b) bigeminy. Atrial fibrillation is detected whenever

Olpmq exceeds the threshold ϑ, then displayed by a thicker line

4.2.3 Bigeminy suppression

It is well-known that bigeminy can be incorrectly interpreted as AF when the detec-
tion is r-base (Langley et al., 2012). In order to address this issue, another measure of r
irregularity is introduced, which is complementary to Itpmq, but has the property of being
essentially indifferent to the presence of bigeminy. The measure is defined by

Bpmq “

¨

˚

˚

˝

M´1
ř

j“0
rmpm ´ jq

M´1
ř

j“0
rpm ´ jq

´ 1

˛

‹

‹

‚

2

, (4.5)

where M is an even-valued integer. Similar to rtpmq and Gtpmq, Btpmq results from
exponential averaging of Bpmq. For bigeminy, as well as for regular rhythms, the ratio in
(4.5) is approximately 1, since rmpmq and rpmq are similar, and thus Btpmq is approx-
imately 0, see Fig. 4.3 b). On the other hand, for AF the variation in rmpmq is lower
than that in rpmq because of the median filtering, and thus Btpmq will increase so that it
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indicates irregularity. The squaring operation in (4.5) improves the differentiation of AF
from other rhythms.

4.2.4 Signal fusion and atrial fibrillation detection

Simple signal fusion is employed to produce the decision function Olpmq: Olpmq

is identical to Btpmq, unless Btpmq exceeds a fixed threshold δ when, instead, it becomes
identical to Itpmq, i.e.,

Olpmq “

"

Itpmq, Btpmq ě δ

Btpmq, Btpmq ă δ.
(4.6)

Figure 4.3 illustrates Olpmq as well as rmpmq, rtpmq, Itpmq, and Btpmq for an AF
episode surrounded by ectopic beats and sinus rhythm with an episode of bigeminy. It is
obvious from Fig. 4.3 a) that median filtering removes the r intervals related to ectopic
beats so that the AF episode can be correctly detected and false alarms avoided. Another
feature of the detector is illustrated in Fig. 4.3 b) where Olpmq is shown to be unaffected
by the occurrence of bigeminy and, consequently, not misclassified as AF. Although Itpmq

increases during bigeminy, Olpmq remains small since Btpmq remains below δ, cf. (4.6).
Similarly, Btpmq is close to 0 during sinus rhythm, and therefore Olpmq is also close to 0.
Atrial fibrillation is detected whenever Olpmq exceeds the fixed threshold ϑ.

The number of mathematical operations needed to implement the algorithm is pre-
sented in Table 4.1, showing that the detector requires very few multiplications/divisions
for processing a single r interval. Of the 8 multiplications, 6 are required for imple-
mentation of the forward–backward exponential averager due to multiplication with β. If
needed, the β-related multiplications can be approximated by additions and a shift.

Table 4.1. The number of arithmetic operations required per r interval.

Multiplications Divisions Additions/subtractions
8 2 45

4.2.5 Online atrial fibrillation detection

Since forward–backward filtering requires that the time-reversed signal is processed,
this type of filtering is best suited for offline processing. On the other hand, for online
processing, forward–backward filtering with the exponential averager in (4.2) is replaced
by forward filtering and a second-order exponential averager, defined by

rtpmq “ β2rpmq ` 2p1 ´ βqrtpm ´ 1q ´ p1 ´ βq2rtpm ´ 2q. (4.7)

To a minor extent, detector performance depends on the phase response of the se-
lected exponential averager. Depending on the choice of β, the exponential averager in
(4.7) produces a group delay that has to be taken into account. Accordingly, β is set to
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the same value for the respective exponential averagers associated with rtpmq, Itpmq, and
Btpmq to ensure identical group delay.

In the following, the AF detector is referred to as either offline or online, depending
on whether filtering is performed according to (4.2) or (4.7). These two versions have the
same computational complexity.

4.3 Atrial activity extraction during atrial fibrillation

4.3.1 Introduction to reservoir computing

The proposed method for atrial activity extraction during AF utilizes a reservoir
computing approach. Reservoir computing is a paradigm in recurrent neural network
training, where the fundamental principles of the idea have been independently proposed
by Herbert Jaeger (2001) under the name of “echo state network” (ESN) and by Wolfgang
Maass et al. (2002) under the name of “liquid state machine”. Liquid state machine was
designed from a view of computational neuroscience aiming to understand the principles
of neural microcircuits, therefore uses more sophisticated and biologically more realistic
spiking neurons, whereas ESN is more directed for practical implementation, thus classi-
cal artificial neurons are involved instead.

When comparing the widely used feed-forward artificial neural networks to recur-
rent neural networks, only the latter ones are suitable for processing of temporal data
(Gurney, 2007). However, recurrent neural networks have not become popular in practical
applications due to their long and complex training process and potential instability. For
ESNs, on the other hand, training is much facilitated by involving only the output con-
nections, which are adjusted by simple linear regression. As a result, the training process
is fast and never gets stuck in local minima. Surprisingly, the ESN has been found to
outperform the more complex, fully trained recurrent neural network in almost all cases
considered (Lukoševičius and Jaeger, 2009).

4.3.2 Fibrillatory signal extraction using echo state network

The proposed atrial activity extraction method uses a classical adaptive filter ap-
proach: the atrial signal is extracted from a mixture of signals using a reference signal that
is modified by a filter with time-variable transfer function – the ESN – and an adaptation
algorithm (see Fig. 4.4 a). The reservoir of the ESN is a large, fixed, randomly generated,
recurrent neural network hat serves as a random nonlinear excitable medium. Its high-
dimensional dynamical “echo” response to a driving input is used as a non-orthogonal
signal basis to reconstruct the atrial output. The input weights Win and the reservoir-
connecting weights W are both generated randomly during network initialization from
a uniform probability density function (symmetric around zero and invariant to training).
The only set of weights which is changed during training is the output weight vector wout.
The ESN is typically trained by driving it with the input signal, and collecting its nonlin-
early transformed and smoothed versions to the reservoir state vector rpnq for the entire

66



�

Adaptive 
algorithm

�

W

xr'(n)

x(n)

Win

wout

�(n)�(n)

a)

�

xr
s
 (n)

xr (n)

z- 1

Win

W

�

Recurrent layer Output layer

r(n-1) r(n)

Input

b)

Wout

xr (n)
Exponential
averaging

�

�(n)

Fig. 4.4. a) Atrial activity extraction based on the echo state network. b) A more detailed view of
the proposed method. The dashed lines indicate adaptive weights, other weights are fixed after

initialization. Note that ŷpnq “ gopwT
outpn ´ 1qzpnqq. The ESN inputs and output are normalized

and denormalized, respectively, according to standard procedure.

training period. Then, wout is computed in a single iteration as a linear combination of the
teacher output and reservoir states. This type of method is suitable for supervised training
when the teacher output is known. However, since offline supervised training of the ESN
is not effective for signals with rapid changes in morphology, continuous online training
is necessary to allow for adaptation, which is sufficiently fast. The adaptation algorithm
of an adaptive filter can also be employed to train wout.

The atrial signal ŝpnq is defined as the error epnq between the lead subject to ex-
traction, denoted xpnq, and the estimate of the ventricular activity ŷpnq produced by the
ESN,

ŝpnq
△
“ epnq “ xpnq ´ gopwT

outpn ´ 1qzpnqq, (4.8)

where gop¨q denotes the output neuron activation function and woutpn´1q the time-varying
output weight vector. The number of neurons in the reservoir is denoted N . The vector
zpnq is the concatenation of the N ˆ 1 reservoir state vector rpnq, the reference sig-
nal xrpnq, recorded away from the atria, its first derivative x1

rpnq, and an impulse-like
signal xsrpnq,

zpnq “
“

rpnq xrpnq x1
rpnq xsrpnq

‰T
. (4.9)
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The signal xsrpnq is identical to xpnq in a short interval of length 2D centered around the
fiducial point ni of the i:th beat; outside this interval xsrpnq is set to 0 (the fiducial point
is here defined by the QRS center-of-mass). Thus, xsrpnq can be viewed as a variant of
the impulse correlated reference input to the adaptive filter (Laguna et al., 1992). The
inclusion of x1

rpnq and xsrpnq offers a more complete characterization of the reference
signal, and can therefore be expected to improve the performance of the ESN.

The output weights woutpnq of the ESN are updated using the recursive least squares
algorithm in combination with least squares prewhitening; for details, see (Douglas, 2000).
The prewhitening part is defined by

vpnq “ Ppn ´ 1qzpnq, (4.10)

upnq “ PT pn ´ 1qvpnq. (4.11)

where Ppnq denotes the inverse of the correlation matrix of zpnq. The update of Ppnq is
given by the following two equations:

kpnq “
1

λ ` }vpnq}2 `
a

λpλ ` }vpnq}2q
, (4.12)

Ppnq “
Ppn ´ 1q ´ kpnqvpnquT pnq

?
λ

. (4.13)

where Pp0q “ d´1I, d is a small positive constant, I the identity matrix, and λ a forgetting
factor, a constant that is commonly chosen in the interval 0.95 ă λ ă 1. The recursive
least squares part of the algorithm produces an update of the output weights,

woutpnq “ woutpn ´ 1q `
epnqupnq

λ ` }vpnq}2
, (4.14)

where woutp0q “ 0. The reservoir state vector rpnq is updated by

rpnq “ gr
`

Wrpn ´ 1q ` Winxrpnq
˘

, (4.15)

where Win is a 3 ˆ N input weight matrix, W an N ˆ N weight matrix of the internal
network connections.

The output of the dynamic reservoir is impulsive in nature and therefore needs to be
smoothed. Here, exponential averaging is employed for smoothing, the update equation
in (4.15) thus being replaced with

rpnq “ αrpn ´ 1q ` p1 ´ αqpgrpWrpn ´ 1q ` Winxrpnqqq, (4.16)

where grp¨q is a reservoir neuron activation function, and α a forgetting factor, a positive
constant less than 1. The recursion in (4.16) is initialized with rp0q “ 0.

The block diagram in Fig. 4.4 b) illustrates the main processing steps of the method.
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4.4 Method for detection of brief episode paroxysmal atrial fibrillation

The main processing steps of the proposed AF detector are shown in Fig. 4.5. The
detector requires two ECG leads as input; of which one needs to be positioned away from
the atria, i.e., precordial lead V6. A sliding window approach is taken to paroxysmal AF
detection: the window length is defined by the number of beats Mb, rather than by a time
period, since a beat-based definition seems more natural when detecting brief episodes.
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Fig. 4.5. Block diagram of the proposed paroxysmal AF detector. The echo state neural network
is used for PQRST cancellation in the target lead xpnq, here given by V1; the reference lead xrpnq

is V6. The output ŝpnq of the block labeled “PQRST cancellation” contains f-waves during AF,
and otherwise noise and PQRST residuals. See the text for definitions of signals and parameters

4.4.1 Atrial activity characterization

Similar to other techniques for atrial activity extraction during AF, the ESN-based
technique, presented in section 4.3, is proposed under the assumption that AF is present
and, accordingly, a signal with f-waves is fed to the ESN. That assumption is not valid
here, since the input signal may just as well contain P-waves. However, preliminary tests
showed that the ESN is not only suited for cancellation of QRST complexes but also for
P-waves. As a consequence, the parameters characterizing P-wave absence and f-wave
presence, are both computed from the ESN output.

In the present application, the ESN can be viewed as an adaptive filter which pro-
duces an output signal ŝpnq with the f-waves from the target signal xpnq when AF is
present, whereas ŝpnq mostly contains the noise of xpnq and PQRST residuals when AF
is absent. The reference signal xrpnq is filtered by a time-variable transfer function, see
Fig. 4.5. The output signal ŝpnq is defined as the error epnq between the target signal xpnq

and the ESN output ŷpnq, being an estimate of the PQRST or the QRST complex. The
structure of the ESN is used the same as it is described in Sec. 4.3.2.

P-wave absence pPq is quantified by first computing the squared error between two
different PR intervals,

eij “

nR
ÿ

n“nP

`

ŝpni ´ nq ´ ŝpnj ´ nq
˘2
, (4.17)
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where nP and nR denote the onset and end of the PR interval, respectively, both located
at fixed distances from the fiducial points ni and nj , i ‰ j. Then, the squared error is
averaged for all pairwise combinations of the Mb beats in the detection window,

P “

Mb´1
ÿ

i“1

1

Mb ´ i

Mb
ÿ

j“i`1

eij . (4.18)

The parameter P is close to 0 in rhythms with P-waves, but increases when f-waves are
present. Since the F-waves of atrial flutter are largely cancelled by the ESN, thanks to
their much more stable pattern than the f-waves, the corresponding value of P is close
to 0. In contrast to (Carvalho et al., 2012), this approach of characterizing P-wave absence
requires no P-wave template, neither is it sensitive to variations in morphology, since P-
waves have already been cancelled by the ESN.

f-wave presence pFq is quantified by the parameter known as spectral concentration
(Castells et al., 2005b),

F “
1

Eŝ

ż

Ωp

Pŝpωq dω, (4.19)

where Pŝpωq and Eŝ denote the power spectrum and energy, respectively, of ŝpnq in the
Mb-beat long detection window. The integration interval Ωp is centered around the dom-
inant spectral peak located within the interval rωp,0, ωp,1s (Castells et al., 2005b). When
f-waves are present, the dominant peak reflects AF frequency and F becomes closer to 1,
whereas it is closer to 0 for sinus rhythm. The power spectrum Pŝpωq is obtained using
Welch’s method (1 s cosine window with 50 % segment overlap).

4.4.2 Ventricular activity characterization

A parameter of r interval irregularity pRq is quantified by the coefficient of sample
entropy, defined by

R “ ´ ln
´A

B

¯

` lnp2trq ´ lnpw̄rq, (4.20)

where A and B denote the total number of r interval patterns of length w ` 1 and w,
respectively, that match within a certain tolerance tr; for details, see the paroxysmal AF
detector described in (Lake and Moorman, 2011). The mean length of the r intervals in
the detection window is denoted w̄r.

4.4.3 Noise level estimation

The noise level is estimated by the root mean square value ζŝ of ŝpnq, weighted by
a ratio of spectral entropies. The numerator and denominator are computed in spectral
bands dominated by noise and f-waves, respectively, defined by the respective frequencies
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ωn and ωa. The noise parameter N , defined by

N “ ζŝ ¨

ż ωn,1

ωn,0

Pŝpωq ¨ log2 Pŝpωq dω

ż ωa,1

ωa,0

Pŝpωq ¨ log2 Pŝpωq dω

, (4.21)

is small when Pŝpωq reflects AF, whereas it is large when motion artifacts and/or elec-
tromyographic noise is present. The properties of N are further investigated in Sec 5.4.3.

4.4.4 Atrial fibrillation detection based on fuzzy logic

A Mamdani-type fuzzy inference method is employed for AF detection (Mamdani
and Assilian, 1975). With fuzzy logic, numerical and linguistic knowledge are combined,
which makes it particularly useful in applications where subjective knowledge is available
about the process. The present design comes with four inputs, i.e., P , F , R, N , a set of
“if–then” rules, and one output O. By means of an input membership function, each input
value is mapped (“fuzzified”) to a value that indicates the degree of belonging to a certain
fuzzy set. For P , F , and R, the fuzzy sets relate to sinus rhythm (SR) and AF, and the
following two input membership functions are employed (Fig. 4.6 a):

µSRpxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

1, x ď a

1 ´ 2
´

x´a
b´a

¯2
, a ď x ď a`b

2

2
´

x´b
b´a

¯2
, a`b

2 ď x ď b

0, x ě b,

(4.22)

and
µAFpxq “ µSRpa ` b ´ xq. (4.23)

The shape of µSRpxqand µAFpxq is defined by the parameters a and b. For N , the same
type of input membership function is employed, but the fuzzy set relates instead to the
noise level which is judged either to be low or high.

The set of if–then rules are then activated: in each rule, the antecedent is the fuzzified
input value and the consequent is the linguistic output that reflects the degree of confidence
of SR and AF. Each rule is composed of the four fuzzified parameters and combined
with the AND operator. The output of each rule is defined by the Gaussian membership
function,

µkpyq “ exp

„

´
py ´ ckq2

2σ2

ȷ

, k “ 0, . . . , C, (4.24)

where ck and σ2 determine location (output specific) and width, respectively, and C is the
number of linguistic outputs (Fig. 4.6 b). For each rule, the degree of activated output is
determined by the minimum value of each member. For simplicity, all rules are assigned
a weight equal to 1.
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The inference of a fuzzy block is based on all rules, and therefore the output of
the individual rules µkpyq are combined using the maximum method for accumulation to
produce the overall fuzzy output µopyq. The output value is obtained using the centroid
defuzzification method, defined by

O “

ż ymax

ymin

yµopyqdy

ż ymax

ymin

µopyqdy

, (4.25)

where ymin and ymax are the lower and upper limits, respectively, of the overall fuzzy
output. The output O is a value between 0 and 1 which reflects the likelihood that the
detection window contains AF.

Since a short detection window is likely to cause more false alarms, median filtering
(whose length is equal to that of the sliding window, i.e., Mb) is applied to the output O
for the purpose of suppressing outlier values (it is recalled that O is a signal that results
from the sliding window computation). Paroxysmal AF is detected whenever the output
of the median filter exceeds a fixed threshold η p0 ă η ă 1q.

4.5 Derivation of electrocardiogram lead system for ambulatory monitoring of parox-
ysmal atrial fibrillation

The Lewis lead system consists of 5 leads; of which two, denoted L1 and L2, are
derived for the purpose of enhancing the f-waves (Lewis, 1913). The bipolar chest lead
L1 is obtained by placing electrode 1 over the upper end of the sternum and electrode
2 to the right side of the sternum at the 2nd intercostal space, whereas L2 is the voltage
between electrodes 2 and 3 placed on the right side of the sternum at the 4th intercostal
space (Fig. 4.7 a). Lead L3 represents the voltage between electrodes 1 and 4, which both
lie in the midaxillary line on the left side of the body at the level of the 5th intercoastal
space.
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lead system

The modified Lewis lead, denoted LM1, is obtained by removing electrode 2 and
moving electrode 3 one intercostal space downwards (from the 4th to the 5th) in order to
increase the immunity to arm movements (Fig. 4.7 b). The modified Lewis lead system
includes the additional lead LM2. The combination of LM1 and LM2 can be used to derive
L3 by applying Kirchhoff’s voltage law. It should be noted that “the modified Lewis lead”
stands for LM1 whereas “the modified Lewis lead system” is defined by the three leads
LM1, LM2 and L3.

The modified Lewis lead system was compared to the original Lewis lead system
(i.e., L1, L2, and L3) as well as to lead ES of the EASI system. The EASI lead system
uses 4 electrodes placed on the torso, of which E, A, and I are placed on the same areas as
in the Frank lead system (Dower et al., 1988). In the EASI system, electrode S is placed
over the upper end of the sternum and electrode E at the bottom of the sternum at the level
of the 5th intercostal space (Fig. 4.7 c).

4.6 Conclusions of the chapter

1. A low-complexity algorithm for detection of paroxysmal AF in continuous long-
term monitoring devices has been developed. The proposed detector includes blocks
of ectopic beats filtering and bigeminy suppression in order to reduce the number of
false alarms due to ectopy-caused irregular rhythms. The detector can be used both
in online and offline applications.

2. An echo state neural network based adaptive filter has been proposed for atrial
activity extraction during AF using just two ECG leads – one with atrial activity
expressed, and the other without. The method is based on sequential sample-by-
sample signal processing, what makes it possible to analyse data in real-time.

3. A method for detection of brief episode paroxysmal AF has been proposed. The
method relies on the combination of parameters characterizing both atrial and ven-
tricular activity, and accounts for the prevailing noise level, thus may improve AF
detection in ambulatory ECG recordings.
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4. Electrocardiogram lead configuration (the modified Lewis lead system) for ambu-
latory monitoring of AF has been derived. The proposed ECG lead configuration
involves only three electrodes, placed in areas of the body with less muscle, thereby
reduced amplitude of motion artefacts is expected.
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5 PERFORMANCE EVALUATION OF THE DEVELOPED METHODS

5.1 Datasets

Both clinical and simulated data have been used for developing and testing the pro-
posed algorithms. Clinical data was used for developing and testing the r interval analysis
based algorithm, whereas simulated signals were involved for investigation of the algo-
rithm for brief AF episode detection. A database collected for investigation of the derived
ECG lead system is described separately in Sec. 5.5.1.

5.1.1 Clinical signals

Four clinical databases containing ECG signals with AF, and one arrhythmia free
database have been used for developing and testing the algorithms. A brief description of
each clinical database is provided below.

The Long Term Atrial Fibrillation database (Petrutiu et al., 2007; Goldberger et al.,
2000) is composed of 84 ECG recordings from patients with paroxysmal or persistent AF,
most recordings with a 24 h duration. The entire database consists of nearly 9 million
beats of which 59 % occur during AF.

The MIT–BIH Atrial Fibrillation database (Moody and Mark, 1983; Goldberger et
al., 2000) includes 25 AF recordings of approximately 10 h duration, and contains in total
more than 1 million beats, of which 43 % occur during AF. Two subsets of the AF database
were also analyzed in order to facilitate the comparison with published results, namely,
by excluding records 04936 and 05091, since these contain incorrect annotations, and by
excluding records 00735 and 03665, since these only contain r interval information. The
resulting two subsets are labeled AFDB1 and AFDB2, respectively.

The MIT–BIH Arrhythmia database (Moody and Mark, 1983; Goldberger et al.,
2000) is composed of 48 annotated ambulatory ECG recordings of half-hour duration,
and includes various types of arrhythmia episodes. Twenty-five signals, named as 200–
series consist paroxysmal AF episodes.

The fourth AF database is composed of 12-lead ECG signals recorded from 211
patients with diagnosed AF. The database was recorded using equipment by Siemens-
Elema AB, Sweden (Stridh et al., 2004).

The MIT–BIH Normal Sinus Rhythm database (Goldberger et al., 2000) contains 18
ECG recordings of approximately 24 h duration, with a total of almost 2 million beats.
Since no significant arrhythmias are present, it is well-suited for the evaluation of detector
specificity.

5.1.2 Simulated signals

Due to the lack of annotated databases with brief paroxysmal AF, test signals were
generated for performance evaluation of proposed AF detectors in a special case, when AF
episodes lasting just 5–30 s are the subject of analysis. In order to generate signals with
paroxysmal AF episodes, the concatenated ECGs were altered with respect to rhythm and
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morphology. In paroxysmal AF episodes, the signal was produced by adding the ventricu-
lar activity of the ECG and synthetic f-waves produced by a sawtooth model. During SR,
the original P-waves were modified to produce a more challenging test signal with larger
morphologic beat-to-beat variability. The original r interval series was replaced by a se-
ries produced by a model of either SR or AF. Finally, EMG noise was added at different
RMS values to produce the test signal.

This section describes the steps required for generating test signals with brief parox-
ysmal AF. The ECGs of the PTB database, which served as a basis for signal generation,
were first subjected to baseline removal and QRST delineation (Laguna et al., 1994).

Ventricular rhythm
The number of beats in SR and AF episodes was uniformly distributed in the interval

[5, 30], unless otherwise stated, and thus the test signals contained about the same number
of episodes of SR and AF.

The model by McSharry et al. (2003) was used to generate r intervals during SR.
The mean heart rate was set to 60 bpm with the standard deviation to 2 bpm, the res-
piratory rate to 0.25 Hz and the low-frequency/high-frequency ratio to 1. During AF,
an atrioventricular node model was used to generate r intervals (Corino et al., 2011). The
mean arrival rate of atrial impulses was set to 6 Hz, the minimal refractory period to 0.25 s,
the probability of an impulse to take the slower pathway to 0.6, the maximal refractory
period prolongation to 0.1 s (identical for both pathways) and the difference between the
two refractory periods to 0.2 s.

Ventricular morphology
The original T-waves were first resampled to a fixed width, and then, depending on

type of rhythm, the width-adjusted to match the prevailing heart rate. During SR, the T-
wave was resampled relative to the current r interval using Bazett’s formula, where the
corrected QT interval was set to 420 ms. During AF, the QT interval was shorter than
during SR, and set to a fixed value (250 ms). After an AF episode terminated, the T-
wave duration was gradually increased over the next five beats so as to produce a smooth
transition from AF to SR. When needed, the TQ interval was padded with zeros.

Since APBs occur quite commonly in AF patients (Thong et al., 2004), a certain
percentage of APBs was introduced in the test signal. The occurrence of an APB caused
the preceding r interval to be 25 % shorter and the following 25 % longer.

P-waves
In lead V6, P-waves are usually monophasic in shape and therefore reasonably well

modeled by the first Hermite function (Sörnmo et al., 1981; Jané et al., 1993):

Φpnq “

2
ÿ

i“0

kiϕipnq, (5.1)
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where ki is a weighting factor for each Hermite function ϕi. The first three Hermite
functions are given by

ϕ0pnq “
1

a

d0
?
π

¨ e´n2{2d2
0 (5.2)

ϕ1pnq “ ´

?
2

a

d1
?
π

¨
n

d1
e´n2{2d2

1 (5.3)

ϕ2pnq “
1

a

2d2
?
π

¨

ˆ

2n2

d22
´ 1

˙

¨ e´n2{2d2
2 (5.4)

The parameters d0, d1 and d2 determine the width of each Hermite function. The second
ϕ1pnq and third ϕ2pnq Hermite functions, were added with random weights (normal distri-
bution, zero-mean, variance 0.1) to make the morphology vary over time. Since P-waves
in V1 are often biphasic in patients with paroxysmal AF (Kuo et al., 2003), they were mod-
eled by simply differentiating the corresponding P-wave in V6. The peak-to-peak P-wave
amplitude was set to 50 µV in both V1 and V6. The PR interval length was uniformly
distributed within the interval [175,185] ms.

Fibrillatory f-waves
The f-waves are generated using a sawtooth model, first introduced in (Stridh and

Sörnmo, 2001), in which both amplitude and repetition rate can be modulated. The model
is defined by a fundamental and L ´ 1 harmonics:

sdpnq “

L
ÿ

l“1

hlpnq sin

ˆ

lω0n `
∆f

ff
sinpωfnq

˙

, (5.5)

where the fundamental frequency ω0 “ 2πf0 has the maximum frequency deviation ∆f

and the modulation frequency ωf “ 2πff . The amplitude alpnq is defined so that a signal
with sawtooth characteristics is produced,

hlpnq “
2

lπ
ph ` ∆h sinpωhnqq , (5.6)

where a denotes sawtooth amplitude, ∆h modulation amplitude, and ωh “ 2πfh ampli-
tude modulation frequency. The following parameter values are used: L “ 3, f0 „ 6 Hz,
∆f „ 0.25 Hz, ff „ 0.2 Hz, and fh „ 0.2 Hz. The f-wave amplitude h is chosen so that a
certain RMS value of the simulated atrial activity is obtained and ∆h “ h{3. This choice
of model parameter values is similar to those of case A studied in (Stridh and Sörnmo,
2001), the difference being that the amplitude modulation is more pronounced here, so as
to produce more challenging signals.

The sawtooth f-wave model has been employed for performance evaluation in vari-
ous studies, i.e., (Stridh and Sörnmo, 2001; Sandberg et al., 2008a; Alcaraz et al., 2009).
However, when applied to the ESN, the network can learn the predictable changes in am-
plitude and repetition rate that are characteristic of this model and consequently produce
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Fig. 5.1. Illustration of test signals with a single brief AF episode in leads V1 and V6 when the
noise level is set to a) 20 µV, b) 50 µV, and c) 100 µV

results that show partiality toward the method. This problem is circumvented by extend-
ing the model, so that the variations in f-wave morphology become more unpredictable,
here accomplished by adding colored noise to sdpnq. Coloring is made through bandpass
filtering of white noise (whose variance is a factor 10 smaller than the sawtooth ampli-
tude h) with cutoff frequencies at 1.8 and 6.2 Hz. Thus, the f-wave model signal spnq is
composed of a deterministic and a random component:

spnq “ sdpnq ` srpnq. (5.7)

The amplitude in V1 was taken to be 5 times larger than that in V6 to reflect the fact
that f-waves have a much larger amplitude in V1 than in V6. This difference in amplitude
was caused by the longer distance from the heart to the electrode site and an electrical
vector that is much more scattered during AF.

Noise
Following summation of ventricular and atrial activities, electromyographic noise

taken from the MIT–BIH Noise Stress Test Database (Moody et al., 1984) was added to
produce the final test signal (the noise first rescaled to the desired RMS value). A number
of test signals with different noise levels are displayed in Fig. 5.1.
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5.2 Low-complexity detection of paroxysmal atrial fibrillation

5.2.1 Data and performance measures

The r-based AF detector was developed on the entire Long Term Atrial Fibrilla-
tion database. The MIT–BIH Atrial Fibrillation database and the MIT–BIH Normal Sinus
Rhythm database were used for performance evaluation. To facilitate the comparison, the
performance of the proposed detector has been evaluated on the commonly used com-
binations of the MIT–BIH Atrial Fibrillation and the MIT–BIH Normal Sinus Rhythm
databases.

The ability of the algorithm to detect brief AF episodes was investigated by eval-
uating the performance as a function of AF episode duration using simulated r series.
A model by McSharry et al. (2003) is used to generate r intervals during sinus rhythm,
whereas an atrioventricular node model is used to generate r intervals during AF (Corino
et al., 2011). When combining these two models, different r interval series can be gener-
ated with variable episode duration, mean heart rate and heart rate variability as illustrated
in Fig. 5.2.
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Fig. 5.2. Two examples of paroxysmal AF, each containing two AF episodes with 100 beats; note
that the r interval series are simulated. The mean and standard deviation of the heart rate during

sinus rhythm is a) 60 ˘ 1 beats per minute (bpm) and b) 60 ˘ 5 bpm

Detector performance was tested using different r series with alternating episodes of
sinus rhythm and AF. The entire database with simulated signals consists of four datasets,
each dataset defined by the mean and standard deviation of the heart rate during sinus
rhythm, namely, 60 ˘ 1, 60 ˘ 5, 100 ˘ 1, and 100 ˘ 5 bpm. Each dataset is, in turn,
divided into nine subsets with fixed AF episode lengths, ranging from 20 to 180 beats in
steps of 20 beats. Thus, the database is composed of 36 subsets, each consisting of 5000
r intervals for which 100 realizations were computed.
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The performance was investigated in terms of the area under the curve (A) of the
receiver operating characteristic (ROC), sensitivity (Se) and specificity (Sp). Sensitivity
is defined by the number of correctly detected AF beats divided by the total number of
AF beats, whereas specificity is defined by the number of correctly detected non-AF beats
divided by the total number of non-AF beats. All other types of rhythm, including atrial
flutter, were labeled as non-AF.

5.2.2 Parameter settings

Figure 5.3 displays A as a function of the exponential averaging parameter β for
the Long Term Atrial Fibrillation database. For all investigated values of γ, M , and δ,
the results show that A improves as β decreases. While these results suggest that a small
β should be chosen, such a choice also means that the risk of missing brief episodes of
paroxysmal AF increases. Therefore, it is important to complement the results in Fig. 5.3
with others that pinpoint detection performance as a function of episode length.
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Fig. 5.3. The influence of different parameters on detection performance in terms of A: a) β and γ
for M “ 8 and δ “ 2 ¨ 10´4, b) β and M for γ “ 0.03 and δ “ 2 ¨ 10´4, and c) β and δ for
γ “ 0.03 and M “ 8. These results are based on the Long Term Atrial Fibrillation database

Using simulated signals, Fig. 5.4 demonstrates that the detection of brief episodes
improves as β increases. For example, for β “ 0.1, an area under the curve of A “ 0.92

is obtained for 20-beat episodes, whereas, for β “ 0.02, the same value of A is obtained
for 60-beat episodes. Hence, it can be concluded from the results in Figs. 5.3 and 5.4
that the choice of β should be a trade-off between avoiding false alarms due to non-AF
arrhythmias (calling for a small β) and detecting brief AF episodes (calling for a large β).

Another important result conveyed by Fig. 5.4 is that better performance is obtained
in situations with low heart rate and low variability (i.e., 60 ˘ 1 bpm) than in situations
with high heart rate and high variability (i.e., 100 ˘ 5 bpm).

Based on the results in Figs. 5.3 and 5.4, the following parameter values were chosen
as a trade-off between the above-mentioned performance aspects: γ “ 0.03 s, M “ 8,
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Fig. 5.4. Detection performance A as a function of AF episode length for a) β “ 0.01, b)
β “ 0.02, c) β “ 0.05, and d) β “ 0.1. These results are based on simulated signals which do not

contain any arrhythmias except AF

δ “ 2¨10´4, and β “ 0.02. Unless otherwise stated, these values are used in the following
experiments.

Figure 5.5 displays the distribution of the detector output Olpmq for AF and non-
AF beats in the Long Term Atrial Fibrillation database. Based on the properties of these
two distributions, the detection threshold ϑ was chosen as that particular value where
sensitivity and specificity are identical, i.e., ϑ “ 0.725.

5.2.3 Investigation of briefest episode length

The briefest possible AF episode that can be detected was determined by means of
simulated r intervals with one, single AF episode. Starting with an episode length of five
beats, the length was, in this particular test, incremented by one beat at a time until the
episode was detected. The episode length is presented in Table 5.1 for different values of
β – a parameter that is particularly influential on detection performance – together with
the corresponding detection delay. For β “ 0.02, the shortest episode detected contained
60 beats, whereas for β “ 0.05, episodes as short as 15 beats could be detected.
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Fig. 5.5. Distribution of the output Olpmq during AF and non-fibrillatory rhythms (non-AF). The
large bin close to 0 for non-AF beats is due to the bigeminy suppression block. These results are

based on the Long Term Atrial Fibrillation database

Table 5.1. The briefest possible episode detected for different values of β and the corresponding
detection delay. In this particular test, an episode was considered as detected whenever the
annotation and the detector output overlapped with at least 50 %.

β Episode length, beats Delay, beats
0.005 300 318
0.01 120 158
0.02 60 78
0.05 15 30
0.1 8 14

5.2.4 Atrial fibrillation detection on clinical databases

Detection performance was studied for various combinations of the MIT–BIH Atrial
Fibrillation and MIT–BIH Normal Sinus Rhythm databases, see Table 5.2. Using the of-
fline detector with β “ 0.02, the sensitivity/specificity were found to be 97.1/98.3 % on
the MIT–BIH Atrial Fibrillation database, whereas the online version performed marginally
worse with 96.9/98.2 %. When omitting the two records with incorrect annotations, i.e.,
when analyzing AFDB1, the sensitivity increased from 97.1 % to 98.0 % for the offline
version. When evaluating performance on the MIT–BIH Normal Sinus Rhythm database,
a specificity of 98.6 % was achieved for both the off- and online detectors (sensitivity was
not evaluated since no AF episodes were present).

Tuning the detector to finding briefer episodes, i.e., by using β “ 0.05, Table 5.2
shows that such tuning comes at the expense of a slightly reduced performance since
the sensitivity/specificity drop from 97.1/98.3 % to 96.7/97.9 % on the MIT–BIH Atrial
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Fibrillation database for the offline detector.

Table 5.2. Sensitivity and specificity of the proposed detector, evaluated for various combinations
of the MIT–BIH Atrial Fibrillation (AFDB) and MIT–BIH Normal Sinus Rhythm (NSRDB)
databases. Records 04936 and 05091 in AFDB1, and 00735 and 03665 are excluded in AFDB2.

β = 0.02 β = 0.05
Database offline online offline online

Se, % Sp, % Se, % Sp, % Se, % Sp, % Se, % Sp, %
AFDB 97.1 98.3 96.9 98.2 96.7 97.9 96.5 97.9
AFDB1 98.0 98.2 97.7 98.1 97.5 97.8 97.3 97.8
AFDB2 97.1 98.1 96.8 98.0 96.6 97.7 96.5 97.8
AFDB & NSRDB 97.1 98.5 96.9 98.5 96.7 98.4 96.5 98.4
AFDB1 & NSRDB 97.3 98.2 97.0 98.2 96.8 97.8 96.7 97.8
AFDB2 & NSRDB 96.8 98.2 96.5 98.1 96.4 97.7 96.2 97.8
NSRDB NA 98.6 NA 98.6 NA 98.6 NA 98.6

The slight difference in performance between the off- and online versions is due to
the different filters used for trend estimation, defined by (4.2) and (4.7). The influence
of a nonlinear phase on the r interval trend rtpmq is illustrated in Fig. 5.6. Although the
phase distortion is negligible when β is large, i.e., 0.1, a slight exponential reaction during
rhythm transitions can be noted for β “ 0.02 or smaller, leading to slower a reaction when
heart rate changes and higher phase disturbances occur.
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rb(m), β = 0.02
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Beat number

Fig. 5.6. Estimation of r interval trend using forward–backward and unidirectional filtering
techniques. Note that the delay of the unidirectional filter has been compensated for

5.2.5 Discussion

As discussed earlier, AF is often overlooked after interventional therapies when the
standard strategy for treatment evaluation is used, i.e., at least two 24 h Holter recordings
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(Charitos et al., 2012). This finding suggests that continuous AF monitoring performed
during much longer time spans should be recommended so that the success rate is not
overestimated. However, current technology does not allow continuous monitoring, since
most AF detectors require a substantial amount of computations, which render efficient
implementations difficult, especially for detectors that involve morphologic ECG features.
A first step towards efficient implementation was recently taken in (Andersson et al., 2015)
where the r-based detector in (Dash et al., 2009) was implemented in an application spe-
cific integrated circuit (ASIC). The results suggest that the energy required for long-term
operation, i.e., for several years, is well within the battery capacity of an existing im-
plantable device.

The present AF detector is compared to the best-performing detectors in the lit-
erature with respect to sensitivity and specificity, using the MIT–BIH Atrial Fibrillation
database, see Table 5.3. Like in most other studies, performance is presented with one
decimal. It is evident that the detector by Zhou et al. (2014) performs almost as good
as the present detector, although the difference in performance increases slightly when
the results are reported with two decimals: sensitivity/specificity are 97.12/98.28 % and
96.89/98.25 %, respectively.

Table 5.3. Detector performance evaluated on the MIT–BIH Atrial Fibrillation database

Method Year Database Se, % Sp, %
Proposed detector 2015 AFDB 97.1 98.3
Asgari et al. 2015 AFDB2 97.0 97.1
Zhou et al. 2014 AFDB 96.9 98.3
Lee et al. 2013 AFDB1 98.2 97.7
Carvalho et al. 2012 AFDB2 93.8 96.1
Huang et al. 2011 AFDB 96.1 98.1
Lake and Moorman 2011 AFDB 91 94
Lian et al. 2011 AFDB 95.8 96.4
Dash et al. 2009 AFDB1 94.4 95.1
Tateno and Glass 2001 AFDB 94.4 97.2

When evaluating detector performance, it is important, for the reasons mentioned
earlier, to also consider the ability to detect brief AF episodes. Of the detectors in Table 5.3
that employ a window length of 128 beats, i.e., (Tateno and Glass, 2001; Dash et al.,
2009; Huang et al., 2011; Lian et al., 2011), it was only Lian et al. (2011) and Lee et al.
(2013a) who also reported on the performance for shorter windows. Comparing Lian et
al. (2011) results obtained for a length of 32 (i.e., the shortest window studied) with the
results of the present detector obtained for β “ 0.05, the sensitivity is 94.4 % vs. 96.7 %
and the specificity 92.6 % vs. 97.9 %, and thus the present detector offers a considerable
improvement in performance. The algorithm by Lee et al. (2013a) showed even worse
performance of 94.7 % sensitivity and 90.4 % specificity for a window length of 12 beats.

It is obvious that the aforementioned AF detectors with a 128-beat window tend to
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miss brief clinical episodes. With the growing interest in detection of brief AF episodes
(Tayal et al., 2008; Flint et al., 2012; Seet et al., 2011; Rabinstein et al., 2013; Kishore et
al., 2014), with durations from 5 to 30 s, there are even stronger reasons to develop AF
detectors that can operate with window lengths much shorter than 128. Such a goal may
not be easily achieved, however, when the detection process involves the estimation of
probabilities, i.e., used for computing the sample entropy, since a shorter window implies
increased statistical uncertainty.

Thanks to the flexibility introduced by β, the present detector can be tuned to detect
brief episodes, although, just as with any detector, improved detection of brief episodes
comes at the expense of lower specificity. Since the detector was developed on the Long
Term Atrial Fibrillation database, mostly containing very long AF episodes, it is not
surprising that better performance was obtained for a smaller β (ď 0.01), cf. Fig. 5.3.
However, since the detection delay becomes unacceptably large for such small values,
β “ 0.02 was used as a suitable trade-off. For the online detector, a smaller β leads to
increased phase distortion and, therefore, online detectors may be developed considering
more sophisticated approaches to trend estimation (Bianchi et al., 1999; Kim et al., 2009).

A specificity of 98.6 % was achieved on the MIT–BIH Normal Sinus Rhythm database,
see Table 5.2, indicating that the detector produces few false alarms in the presence of res-
piratory sinus arrhythmia. This result is slightly better than those reported in (Huang et al.,
2011) and (Zhou et al., 2014) where the specificity was found to be 98.2 % and 98.3 %,
respectively.

When more complex arrhythmias are encountered, reduced performance is expected.
This reduction can be estimated by analyzing the MIT–BIH Arrhythmia database, which
contains a variety of more complex arrhythmias. The resulting sensitivity/specificity were
found to be 97.8/86.4 %, indicating that most AF episodes could be reliably detected,
while certain arrhythmias are mis-detected as AF. Zhou et al. (2014), being one of the
very few authors who have reported on the performance on this database, achieved sensi-
tivity/specificity of 97.3/90.8 %, where specificity is notably better than that of the present
detector. This difference in performance may be explained by the much longer detection
window used by Zhou et al. (2014) which produces better specificity when long AF
episodes are encountered (as is the case in this database).

The examples in Fig. 5.7 shed additional light on the pros and cons of AF detection
when performed in the presence of various arrhythmias, none of them being AF. In the first
three examples, the detector demonstrates excellent performance when encountering fre-
quent ectopic beats (Fig. 5.7 a), episodes of 2nd degree atrioventricular block (Fig. 5.7 b),
and sinus bradycardia (Fig. 5.7 c). On the other hand, the performance degrades when
atrial flutter (Fig. 5.7 d) or ventricular flutter (Fig. 5.7 e) are encountered, since both these
types of flutter are difficult to distinguish from AF when confining the analysis to r inter-
vals. Figure 5.7 f) displays an episode of a complex supraventricular arrhythmia, which
causes the detector to produce a false alarm.

It is likely that these false alarms in Fig. 5.7 d)–f) can be avoided by the introduction
of a two-stage detection scheme. With its high sensitivity, the present detector can be

85



15 20 25

N

AF

0

0.5

1

1.5

2

2.5

3

r
(m

),
s

Time, min

Record mitdb/119

VPBs, bigeminy, trigeminy

a)

15 20 25

N

AF

0

0.5

1

1.5

2

2.5

3

r
(m

),
s

Time, min

Record mitdb/231

2oB 2oB 2oB

b)

0 2 4 6 8 10

N

AF

0

0.5

1

1.5

2

2.5

3

r
(m

),
s

Time, min

Record mitdb/232c)

10 12 14 16 18 20

N

AF

0

0.5

1

1.5

2

2.5

3

r
(m

),
s

Time, min

Record mitdb/203

AFLAF AF

False alarm

d)

20 22 24 26 28 30

N

AF

0

0.5

1

1.5

2

2.5

3

r
(m

),
s

Time, min

Record mitdb/207

VFL

False alarm

e)

5 10 15

N

AF

0

0.5

1

1.5

2

2.5

3

r
(m

),
s

Time, min

Combined arrhythmias

Record mitdb/222

False alarm

f)

Fig. 5.7. Examples of detector performance for various arrhythmia episodes of the MIT–BIH
Arrhythmia database. The left column displays cases free of false alarms during a) multiple
ventricular premature beats (VPBs), b) 2nd degree atrioventricular block (2˝B) and c) sinus

bradycardia. The right column displays cases with false alarms due to d) atrial flutter (AFL) with
irregular ventricular rhythm, e) ventricular flutter (VFL), and f) an episode of combined

arrhythmias including AF, AFL, atrial bigeminy, supraventricular tachycardia, atrioventricular
junctional rhythm, and atrial premature beats

employed in the first stage to find possible AF episodes. In the second stage, a more
advanced AF detector is employed that involves morphologic information to determine
in further detail whether the detected episodes are correct or not. Since morphologic
analysis is computationally much more costly, the second-stage detector should preferably
be implemented in a server or a smartphone.

While implementational aspects of the detector are outside the scope of this thesis,
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i.e., whether ASIC or a field programmable gate array (FPGA) should be used, a few ob-
servations on detector complexity can nonetheless be made. The present detector requires
a window of only 8 r intervals, which, as already pointed out, is highly desirable from the
viewpoint of detecting brief episodes. Moreover, such a short window implies very mod-
est memory requirements, which is desirable from the viewpoint of energy consumption.
With its extremely simple structure, the detector requires just a few arithmetical operations
(Table 4.1) and no table lookups and, consequently, the implementation can be made to
be very battery-conserving. It is noted that further complexity reduction can be achieved
by replacing the multiplications in (4.2), (4.3), and (4.7) by additions and shifts that are
less costly, reducing the number of multiplications from 8 to 2. For example, the choice
β “ 0.02 can be closely approximated with 5{256 « 0.01953 which is implemented by 5
additions and an 8-bit shift.

Zhou et al. (2014) reported on the computation time needed to analyze different
public databases, but did not provide any information on the required number of arithmetic
operations per r interval. Since that detector makes use of high-order filters, in addition
to the buffer required for the 128-beat window, much more memory is required than for
the present detector.

The low complexity of the present detector is partly achieved by avoiding rather
involved steps for handling of ectopic beats such as those in (Dash et al., 2009) and (Car-
valho et al., 2012). Instead, simple filtering and flagging techniques, i.e., (4.1) and (4.5),
are employed for the purpose of reducing the number of false alarms due to bigeminy.

A limitation of the present study is that the proposed detector was not evaluated on
real ECG data with brief paroxysmal AF, since no such database has yet been annotated.
Instead, an approach involving test signals has been pursued, which can still provide valu-
able insight on detection performance.

5.3 Atrial activity extraction during atrial fibrillation

5.3.1 Data and performance measures

One-hundred 1 min duration ECG signals with AF over the entire signal were gen-
erated according to the simulation procedure described in Sec. 5.1.2. ECGs were selected
from the PTB Diagnostic ECG Database (Bousseljot et al., 1995; Goldberger et al., 2000).
Leads V1 and V6 were chosen as the target and reference signals, respectively. The respec-
tive sampling rates were converted to 250 Hz. The amplitude of the f-waves is defined
as the RMS value, and thus the combined contribution of h,∆h, and srpnq to the f-wave
amplitude is measured in the 1 min segment.

The proposed method was compared to average beat subtraction (ABS), being the
most widely used method for atrial activity extraction. In contrast to the ESN, ABS per-
forms better when data is processed at a sampling rate higher than 250 Hz. Consequently,
ABS was performed at an original sampling rate of 1 kHz in order to reduce the influence
of residuals due to misalignment. It should be noted that ABS was performed only in the
lead subject to atrial activity extraction, but not in the reference lead.

87



The RMS error between spnq and ŝpnq, denoted E, is the principal performance
measure in the time domain. The first second of the analyzed signal was excluded from
the computation of E to avoid the inclusion of transients caused by the f-waves extrac-
tion method; the transient is studied separately. The statistical significance of differences
in E is determined using the two-sample t-test. The statistical results are expressed as
mean˘two-sided confidence interval (95 %).

The power spectrum of ŝpnq is computed in order to evaluate the accuracy of the AF
frequency estimates. The spectrum is obtained using Welch’s method with a 2 s tapered
cosine window and 50 % segment overlap. The location of the maximum spectral peak
within the interval 3–10 Hz is taken as the dominant fibrillatory frequency.

Fifty of the 100 simulated signals were used for initialization of the ESN parameters,
whereas the remaining 50 were used for testing. The “initialization set” contains signals
with an f-wave amplitude of 30 µV. The performance measure E was computed for each of
the 50 simulated signals and then averaged and taken as the overall performance measure,
denoted Ē.

5.3.2 Initialization of echo state network parameters

Using the initialization set, Ē is displayed for different forgetting factors λ and α

in Fig. 5.8 a), showing that the best performance is achieved when α is about 0.8. The
influence of the reservoir size N and λ on Ē is displayed in Fig. 5.8 b). For λ ă 1, Ē
exhibits a minimum when N is about 100, whereas, for λ = 1, Ē continues to improve
as N increases. Based on these findings, the following parameter values are used for the
performance evaluation below: N “ 100, λ “ 0.999, and α “ 0.8.
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Fig. 5.8. The influence of different parameters on Ē. a) The forgetting factors λ and α for
N “ 100, and b) λ and N for α “ 0.8
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By repeating the random initialization of the input weights Win and the reservoir-
connecting weights W for each signal, the robustness of initialization can be assessed
through the statistics of the resulting Ē. Figure 5.9 shows the performance of the proposed
method when random initialization has been repeated 100 times for each of the 50 signals.
This result shows that the initialization of the ESN has only marginal influence on the
performance, since the confidence interval is negligibly small for most signals. It can
be noted though that the length of the confidence interval is slightly increasing for larger
values of E.
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Fig. 5.9. The influence of random initialization of ESN on E. The resulting values for each of the
50 simulated signals are sorted and expressed as mean˘two-sided confidence interval

In addition to N,λ, and α, the ESN contains a number of parameters that have
less influence on performance. The spectral radius ρ of the reservoir weight matrix is
defined by its largest absolute eigenvalue, and is related to an echo state property that
ensures stability (Lukoševičius and Jaeger, 2009). A small value of ρ implies a more rapid
decay of the reservoir dynamics, and vice versa, and therefore ρ will influence the length
of memory and the degree of reservoir nonlinearity. Input scaling exerts an influence
which resembles that of ρ. For small values of input scaling, the reservoir behavior is
almost linear because the nonlinear regions of the activation function are not excited. On
the contrary, large values of input scaling drive the reservoir neurons to the nonlinear
regions of the activation function. An interesting property of the ESN is that the reservoir
does not have to be fully connected. Indeed, it is sufficient with a sparsely connected
reservoir, i.e., 5–20 % of all connections depending on reservoir size, which thus leads to a
substantial reduction in computational complexity when compared to the fully connected
reservoir. The following parameter values are used: ρ “ 1, input scaling set to 1, and
reservoir connectivity set to 20 %. In addition, the hyperbolic tangent is used as a reservoir
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activation function, whereas the identity activation function is used as output neuron. The
recursive least squares algorithm is initialized with d “ 0.01.

The results presented below are based on the test set with 50 signals, but extended
using a fixed f-wave amplitude RMS in each set, incremented in steps of 10 µV from 10
to 50 µV. These amplitudes were selected so as to put special emphasis on the problem
of how to extract low-amplitude atrial activity, a problem that has not received much
attention in engineering literature. Thus, the test set contains a total of 50 ¨ 5 “ 250

simulated signals.

5.3.3 Results of atrial activity extraction during atrial fibrillation

Figure 5.10 a) presents the performance of the ESN and ABS in the time domain as
quantified by Ē. The results show that the ESN is much better in extracting the f-wave
signal than ABS – a result which applies to both when Ē is computed for the entire signal
as well as when it is confined to the QRS interval. The input vector xrpnq to contain
not only xrpnq but also its first derivative x1

rpnq, and an impulse-like signal xsrpnq, yields
better performance than does a vector defined by either xrpnq only or xrpnq and x1

rpnq.
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Fig. 5.10. a) The performance measure Ē for the ESN using different reference input
(ESN0–xrpnq; ESN1–xrpnq, x1

rpnq; ESN–xrpnq, x1
rpnq, xs

rpnq) and ABS. The performance
measure Ē results from averaging over the 5 sets with different f-wave amplitudes. b) Estimates

of the dominant AF frequency for a true AF frequency of 6 Hz. Results are expressed as
mean˘two-sided confidence interval

Figure 5.10 b) displays the results from estimating the dominant AF frequency at
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different f-wave amplitudes. It is clear that the ESN offers superior performance at most
amplitudes: accurate estimates are produced for amplitudes of 20 µV or larger, whereas
ABS requires at least 40 µV. The performance loss of ABS is largely due to low-frequency
residuals of ventricular activity, which cause the dominant AF frequency to be underesti-
mated.
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ŷa(n)

s(n)
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ŝ(n)
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Fig. 5.11. Examples of f-waves extraction in simulated ECG signals (xpnq–lead with AF;
ŷpnq–ventricular activity estimated by the ESN; ŷapnq–ventricular activity estimated by ABS;

spnq–modeled f-waves; ŝpnq–f-waves estimated by the ESN; ŝapnq–f-waves estimated by ABS),
and corresponding power spectra. The following ECG attributes are particularly pronounced:

a) fast QRS amplitude changes, b) beat-to-beat variation in morphology, and c) the occurrence of
large ectopic beats. Note that ECGs in these examples were obtained by adding the simulated

f-waves to non-AF ECG signals

The proposed method has a number of features that are illustrated by the signals
displayed in Fig. 5.11. Rapid changes in QRST morphology are handled well, since the
resulting atrial signal ŝpnq does not contain large residuals, see Figs. 5.11 a) and b). The
short-term memory of the reservoir allows the ESN to remember previous QRST mor-
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phology so that it can react properly to the subsequent beat. Figure 5.11 c) illustrates ESN
performance when a number of large-amplitude ectopic beats occur, still producing an
atrial signal with negligible ventricular residuals. The spectra corresponding to the atrial
signal estimates displayed in Figs. 5.11 b) and c) show that the low frequency components
associated with the ABS-produced signals are absent for the ESN.

The importance of the initial transient is investigated for the two methods. This issue
is of interest, since it is sometimes necessary to perform ventricular activity cancellation
in short recordings or when episodes of paroxysmal AF are subject to analysis having a
duration of just a few seconds. Figure 5.12 illustrates how Ē decreases with time for the
ESN and ABS, indicating that the ESN converges in about 1 s whereas the transient time
of ABS is much longer.
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ŷ(n)
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Fig. 5.12. a) The initial transient associated with the ESN and ABS. b) Initial transient statistics
from analyzing the test set of 50 signals (f-wave amplitude is set to 30 µV), presented as

mean˘two-sided confidence interval. The results of the two methods differ significantly at all
time instants (p ă 0.001)

Figure 5.13 illustrates the performance of the ESN when ECGs recorded during AF
are processed. Lead I or V1 is subject to cancellation, whereas V6 is used as the reference
lead in both cases. Similar to the results obtained on simulated ECG signals, the ESN is
capable of handling morphological beat-to-beat variability, as well as the presence of one
single ectopic beat.
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ŝa(n)

a)

0 10 20
0

0.5

1

1.5

2

2.5
x 10

−4

P
ow

er
sp
ec
tr
u
m
,

m
V

2

H
z

Frequency, Hz

ESN
ABS

0 2 4 6 8 10

Time, s

x(n)
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ŝa(n)

b)

0 10 20
0

1

2

3

4

5

6
x 10

−3

P
ow

er
sp
ec
tr
u
m
,

m
V

2

H
z

Frequency, Hz

ESN
ABS

Fig. 5.13. Examples of atrial activity extraction in ECG signals recorded during AF (xpnq–lead
with AF; ŝpnq–f-waves estimated by the ESN; ŝapnq–f-waves estimated by ABS), and the

corresponding power spectra. The lead subject to f-waves extraction is a) I and b) V1. Lead V6

serves as the reference lead (not displayed)

5.3.4 Discussion

The present section explored the echo state network for atrial activity extraction
during AF and represented, as such, one of the very first studies in biomedical signal
processing. An important feature of the ESN is that only the output weights woutpnq

are subject to update during training, whereas the input weights and hidden weights are
initialized once and for all, thereby leading to feasible computational requirements as
discussed below. Since the ESN is characterized by a nonlinear transfer function, it offers
more degrees of freedom in the adaptation process, which in turn, translates to better
signal extraction.

The time domain performance measure is the RMS value Ē of the estimation error
pŝpnq ´ spnqq. The normalized RMS error represents another measure that has been em-
ployed for evaluation of atrial activity extraction performance (Alcaraz and Rieta, 2008).
However, this particular measure suffers from the disadvantage of being dependent on
f-wave amplitude, i.e., performance improves only by increasing f-wave amplitude. In
contrast to (Alcaraz and Rieta, 2008), where large f-waves were analyzed, the present
study focuses on small f-waves, and therefore, the unnormalized RMS error is judged to
be a more relevant performance measure.
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The ESN exhibits similar performance irrespective of the degree of rhythm regular-
ity, see Fig. 5.13 for an illustration of this property. The same observation does not apply to
methods based on ABS because the samples at the boundaries of the beat average become
increasingly unreliable as the rhythm becomes increasingly irregular. Another difference
between the ESN and ABS based methods is that the latter one requires a sampling rate
of about 1 kHz to avoid misalignment-related residuals, whereas the ESN performs well
at 250 Hz.

The commonly used least mean squares algorithm for adaptation of the adaptive
filter coefficients is unsuitable in this application because of its slow convergence (Jaeger,
2001). The much faster convergence offered by the recursive least squares algorithm
is crucial to the analysis of ECG signals due to the rapid changes in beat morphology
that may occur. Least squares pre-whitening was applied to improve the stability of the
recursive least squares algorithm (Douglas, 2000).

The computational requirements of the proposed method depend on the amount
of computations needed to update the ESN reservoir states and to implement the pre-
whitened recursive least squares algorithm. Pre-whitening requires 4N2 ` OpNq mul-
tiplications per iteration (N being the number of coefficients in the output layer). The
proposed method, which was implemented in Matlab (Mathworks Inc.) on a 2.6 GHz
dual core processor, requires only about 300 µs to process one input sample. If a larger
reservoir is needed for better performance than the one of the present study, which contains
100 neurons, the increase in computational demands can, to some extent, be compensated
for by optimizing the reservoir via elimination of inefficient neurons (Dutoit et al., 2007).

5.4 Detection of brief episode paroxysmal atrial fibrillation

5.4.1 Data and performance measures

The dataset used for developing the proposed brief AF detector was a database pre-
viously described in (Stridh et al., 2004), with standard 12-lead ECGs from 211 patients
clinically diagnosed with paroxysmal or persistent AF.

Due to the lack of annotated databases with brief paroxysmal AF, test signals were
generated for performance evaluation. The starting point was a set of 100 ECGs selected
from the PTB Diagnostic ECG Database (Bousseljot et al., 1995; Goldberger et al., 2000),
containing signals from 50 healthy subjects and 50 patients with myocardial infarction, all
with sinus rhythm and lasting for about 2 min. The original sampling rate of 1000 Hz was
decimated to 250 Hz to alleviate the computational demands of the ESN. Leads V1 and
V6 were selected as target and reference signals, respectively. The original ECG was then
subjected to repeated concatenation until at least 1000 beats were included.

The capability of N to characterize noise, but not f-waves, was investigated using
100 5 s segments each of f-waves extracted from the AF database in (Stridh et al., 2004),
and EMG noise extracted from the MIT–BIH Noise Stress Test Database (Moody et al.,
1984). All 5 s segments were normalized with respect to their RMS value.

The principal performance measure is a classification ratio, denoted S, defined as the
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number of correctly detected AF and SR episodes divided by the total number of episodes
in a signal. Sensitivity is the number of correctly detected AF episodes divided by the
total number of AF episodes, whereas specificity is the number of correctly detected SR
“episodes” divided by the total number of SR episodes. An episode is considered to be
correctly detected if the overlap between annotation and detector output is at least 50 %.
The statistical results are expressed as mean˘two-sided confidence interval (95 %). All
statistical results are based on 100 test signals.

5.4.2 Parameter settings

All parameter values of the detector were determined through experimentation on
ECG data, which were not part of the performance evaluation. In some case, the parameter
values were identical to those used in previous sections.

Since the goal of the present work is to detect brief paroxysmal AF, the length of the
sliding window was set to only Mb “ 5 beats. The ESN was implemented using N “ 100,
λ “ 0.999, α “ 0.8, and D “ 50 ms. The PR interval was set to pnR, nP q “ p50, 250q ms
when computing P . The parameters F and R were computed using the values given in
(Castells et al., 2005b) and (Lake and Moorman, 2011), respectively. The parameter N
was computed with the integration interval rωa,0, ωa,1s set to r3, 12s Hz, reflecting that the
AF frequency is usually contained in this interval (Sandberg et al., 2008b), whereas the
noise interval pωn,0, ωn,1s was disjunct and set to p12, 125s Hz.

Table 5.4. The set of 16 fuzzy rules used for AF detection. The columns R,F , and P display
combinations of fuzzified input values, and column N displays the fuzzified noise level. The
rightmost column displays the linguistic output of the different rules, ranging from highly likely
SR to highly likely AF.

No. R F P N Linguistic output
1 SR SR SR Low SR3
2 SR SR SR High SR3
3 SR SR AF High SR2
4 SR SR AF Low SR2
5 SR AF SR High SR1
6 SR AF SR Low SR1
7 SR AF AF High SR0
8 AF SR SR Low SR0
9 AF SR SR High AF0
10 AF SR AF High AF0
11 AF AF SR High AF1
12 SR AF AF Low AF1
13 AF AF AF High AF2
14 AF SR AF Low AF2
15 AF AF SR Low AF3
16 AF AF AF Low AF3

A total of 16 fuzzy rules were used (see Table 5.4). The input membership functions
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in (4.22) and (4.23) are defined by the parameters a and b, determining the extreme values
of the functions. The following values were used: pa, bq “ p´3, 0.2q for R, pa, bq “

p0, 0.6q for F , pa, bq “ p0, 0.015q for P , and pa, bq “ p0, 2q for N . Equidistant locations
were assigned to the Gaussian output membership functions in (4.24): ck “ c0 ` k∆c,
c0 “ 0, ∆c “ 0.143, and C “ 8; the motivation for choosing C is presented in Fig. 5.16.
The set of linguistic outputs was defined by four values of SR and four values of AF, i.e.,
t0, 1, 2, 3u, that reflect the likelihood of SR or AF. For example, the output is labeled SR0
when SR is present with low likelihood, and AF2 when AF is present with rather high
likelihood. The width σ was set to 0.061. The integration interval in (4.25) was set to
pymin, ymaxq “ p´0.2, 1.2q. It should be noted that the guiding-influence when designing
the fuzzy rules is simple: more weight is assigned to R and less weight to P and F when
the noise level N is high, and vice versa when low.

The detection threshold η was fixed and set to 0.5, a choice based on the distributions
of O for SR and AF, see the results below.

5.4.3 Results of brief episode atrial fibrillation detection

Figure 5.14 illustrates the performance of the proposed detector: the two AF episodes
are correctly detected, including the second episode immediately preceded by APBs and
corrupted with EMG noise that drown the f-waves. It can be noted that N is large when
noise is present, while it is close to zero when PQRST residuals and f-waves are present
(as is the case during the first 15 s of the example).
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Fig. 5.14. The performance of the proposed detector is illustrated on an ECG with two brief
episodes of paroxysmal AF. The first 15 s of the signal is noise-free, then followed by a 10 s burst
of EMG noise. The second episode is preceded by two APBs. The output signal O is displayed

with a thick line whenever the detection threshold is exceeded
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To shed further light on how noise is characterized by the parameter N , it was not
only computed for EMG noise but also for f-waves to determine the extent by which f-
waves influence N . Figure 5.15 shows that N is proportional to the noise level, while it
is essentially independent of f-wave amplitude.
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Fig. 5.15. a) Example of EMG noise and extracted f-waves. b) The parameter N computed for
segments with EMG noise and f-waves

The range of each input membership function was determined by the distributions
displayed in Figs. 5.16 a)–d), obtained from the AF database in (Stridh et al., 2004).
While none of the parameters R,F , and P can individually discriminate AF from SR,
Fig. 5.16 f) shows that their combination into O, with N taken into account, offers excel-
lent discrimination for η “ 0.5. Figure 5.16 e) indicates that the classification ratio S is
only mildly dependent on the number of linguistic outputs. Eight outputs were used, since
no further improvement was obtained with additional outputs.

Figure 5.17 a) displays S as a function of noise level when episodes with random
length are analyzed. In order to show the added value of different features, the following
combinations were compared: R, pR,Pq, pR,P,Fq, and pR,P,F , N q, i.e., O.

The results show that the decrease in S for O is just 1 % when the noise level
increases from 20 to 100 µV, and O performs better than R for all noise levels. The clas-
sification ratio of R is constant because the noise does not influence the r interval pattern
through falsely detected or missed heartbeats. While P improves detection performance
only for low noise levels (ă 30 µV), the contribution of F remains significant up to a
noise level of 90 µV. Figure 5.17 b) presents S as a function of noise level, but with 5 %
of all beats being APBs. When comparing to the results in Fig. 5.17 a), it is obvious that
the performance of all detectors deteriorate when APBs are present, however, the deterio-
ration is more pronounced for R as S drops from 96.7 % to 88.1 %. The performance of
O remains superior to R, especially at low noise levels.

The requirement of a reference lead with negligible f-waves may be seen as a major
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Fig. 5.16. a)–d) Distribution of the four fuzzy input parameters during SR and AF. e) Beat-by-beat
classification ratio S as a function of the number of the linguistic outputs C. f) The resulting

distribution of the output O for the number of linguistic outputs set to C “ 8

limitation of the proposed method. The results in Fig. 5.17 c) indicate that increased f-
wave amplitude in the reference lead V6 does not deteriorate S when the amplitude in the
target lead V1 is 30 µV. When the amplitude in V1 is very small, i.e., 10 µV, S drops from
99.1 % to 93.9 %.

Table 5.5 displays the performance of the proposed detector for an increasing num-
ber of beats in the paroxysmal AF episodes. The proposed detector was compared to the
r-based detector in (Lake and Moorman, 2011), using the coefficient of sample entropy
as decision parameter, denoted OR; the detection threshold used in (Lake and Moorman,
2011) was also used here. The results of Table 5.5 show that both O and OR are capa-
ble of detecting all AF episodes for the chosen threshold settings since the sensitivity is
equal to 1. When no APBs are present, the classification ratio of O remains high (88.3 %)
also for episodes with as few beats as 5. When APBs are present, OR has much lower
specificity than O.

The above results, obtained from a large set of test signals, are complemented by a
number of ECG examples. Figure 5.18 a) illustrates that O has a shorter delay than OR

when detecting an AF episode. Figures 5.18 b) and c) illustrate that O is more robust to
false alarms caused by sudden changes in the r interval series, here associated with either
APBs or respiratory sinus arrhythmia.
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reference lead V6, presented for two f-wave amplitudes in the target lead V1

Table 5.5. The influence of episode length on classification ratio (S), sensitivity (Se), and
specificity (Sp) in the absence of APBs, and when 5 % of all beats are APBs. The noise level is
set to 50 µV

APBs
Episode length

5 beats 10 beats 30 beats
S,% Se,% Sp,% S,% Se,% Sp,% S,% Se,% Sp,%

No O 88.3 100 76.2 1.00 100 99.3 100 100 100
OR 81.8 100 64.2 95.7 100 91.9 98.8 100 98.7

5 % O 80.1 100 59.3 92.1 100 85.2 99.2 100 99.1
OR 76.2 100 52.1 82.8 100 66.2 93.0 100 87.1

5.4.4 Discussion

The goal of this work was to propose a reliable method for the detection of brief
paroxysmal AF. With such a detector in long-term monitoring, information on the episode
pattern can be produced, which may help to shed light on clinical challenges such as cryp-
togenic ischemic stroke. The synergy of the four parameters and the a priori knowledge
built into the decision model (cf. Table 5.4) is the main reason why the proposed detector
performs well. Yet, the structure of the present detector is simple, since r irregularity,
P-waves, and f-waves are characterized by just one parameter each.

It has been shown that the success rate of catheter ablation is highly overestimated
when determined from conventional 24 h Holter recordings. This issue can be addressed
by considerably extending the monitoring period so that the likelihood of detecting AF
episodes increases. However, existing techniques for continuous long-term monitoring
reduce the patient’s quality of life and often lead to premature termination of the data ac-
quisition. While patient comfort can be improved by shrinking the size of the monitoring
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Fig. 5.18. Detection performance on ECGs with a) a brief paroxysmal AF episode, b) several
APBs (marked with arrows), and c) respiratory sinus arrhythmia are analyzed. Note that b) and c)
do not contain paroxysmal AF episodes. A thick line of the output indicates that AF is detected

device, using a smaller battery, large battery capacity is nonetheless needed in this type
of monitoring, since battery replacement or recharging should be avoided. In order to
detect paroxysmal AF episodes, novel patient-friendly diagnostic utilities for long-term
ambulatory ECG monitoring have been proposed. Long-term, continuous non-invasive
monitoring is likely to improve the AF detection rate, but considering the often poor sig-
nal quality, it is important to develop robust detectors that minimize the time for manual
reviewing of the data.

Both the detector in (Carvalho et al., 2012) and the proposed detector make use
of atrial information, though in quite different ways. Firstly, an f-wave signal can be
extracted with the ESN when physiological disturbances, such as ventricular premature
beats, are present, thereby precluding the need for ectopic beat detection. Secondly, the
inclusion of noise level in the decision process allows the proposed detector to determine
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whether P and F can be relied on. The detection of brief episodes was not addressed in
(Carvalho et al., 2012), since most episodes of the MIT–BIH Atrial Fibrillation database
are much longer than 30 beats, nor was the performance evaluated at different noise levels.

The proposed detector assumes that P-wave absence, f-wave presence and noise can
be quantified from ŝpnq. The feasibility of this assumption is illustrated by the follow-
ing two examples. Noise appearing in the target signal is not cancelled by the ESN, but
remains in ŝpnq, see Fig. 5.19 a). On the other hand, noise present in the reference lead
does not deteriorate f-wave extraction, see Fig. 5.19 b). Other techniques than the ESN
may be considered for ventricular premature beats, i.e. averaged beat subtraction or spa-
tiotemporal QRST cancellation. These cancellation techniques however suffer from the
disadvantage of requiring many beats for averaging, and therefore do not perform well
when occasional ventricular premature beats occur. For this reason, we promote the ESN
for PQRST cancellation, since accurate f-wave extraction is required when the feature F
is used.
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Fig. 5.19. Examples of f-wave extraction from an ECG when a) the target lead or b) the reference
lead is noisy

The results show that the proposed detector is robust to noise (Fig. 5.17 a), performs
well in the presence of APBs (Fig. 5.17 b) and can detect brief paroxysmal AF reliably
(Table 5.5). The example in Fig. 5.14 suggests that the delay in detection is about 3
beats, and that an episode length of at least 5 beats is needed for detection. This example
also suggests that the detector is already operational after 5 beats from the onset of the
recording, and thus a lengthy initialization period is not required.

In a recent paper on ECG signal quality during arrhythmias, Behar et al. (2013)
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explored skewness and kurtosis for noise quantification. These two parameters are not
suitable though for signals with cancelled ventricular activity, and therefore a novel noise
parameter N was proposed and tested. Still, the main insight of Behar et al. is also valid
here, namely that signal quality parameters should be rhythm-specific.

The use of fuzzy logic is attractive, since basic knowledge on AF can be easily
translated to a set of linguistic rules. The Mamdani-type fuzzy logic does not require
training and its implementation is easily reproduced. On the other hand, the performance
of an artificial neural network based detector depends on the training dataset and, as a
consequence, its performance is likely to drop when noisy data is fed to the artificial neural
network. The main challenge with fuzzy logic is the selection of appropriate membership
functions and rules. Although the present choice of membership functions and rules was
heuristic, the performance of O was still superior to that of OR. The number of linguistic
outputs C and the detection threshold η are crucial parameters and were given special
attention, cf. Figs.5.16 e) and f); the remaining parameters were determined heuristically
from the development dataset.

Other decision techniques may be employed as well, i.e., linear discriminant anal-
ysis or artificial neural networks. However, a much larger dataset must then be used for
training, especially when the noise level constitutes one of the input parameters, and there-
fore such techniques were not considered.

A limitation of the present work is that the proposed detector is not evaluated on
an ECG database with brief paroxysmal AF. Since no such database is yet available with
annotations, an approach with test signals has been pursued, which still provides valu-
able insight on performance. For example, the influence of noise can be investigated in
situations when the noise level exceeds the f- and P-wave amplitudes. Although noise
immunity is a central aspect in long-term monitoring of AF, it has not received much at-
tention in the literature. It should be noted that the present type of test signals preserve the
morphologic QRST variability of the original ECG and the relationship between different
leads. An alternative approach to performance evaluation may be to consider a database
with paroxysmal AF and manually “edit” all signals so that shorter episodes are created.
However, the present approach offers better control of different signal properties and can
produce signals with very challenging properties.

It is obviously desirable to involve more than two detectors in a performance com-
parison, however, detectors in the literature use window lengths of at least 30 s and are
thus unsuitable for brief paroxysmal AF. Hence, a comparison of performance with these
AF detectors, not designed to detect brief paroxysmal AF episodes, would be unfair and
favor the present detector.

Furthermore, it should be noted that the proposed detector is developed exclusively
for analysis of ECG signals. It is not applicable to paroxysmal AF detection in intracardiac
signals, i.e., studied in (Pagana et al., 2012), since P- and f-wave information is explored.
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5.5 Investigation of derived lead system for ambulatory monitoring of paroxysmal
atrial fibrillation

5.5.1 Data and performance measures

Two groups of participants were enrolled in a study. The first group consisted of 41
healthy volunteers (16 women), 25.0 ˘ 5.9 years old, with body mass index of 22.2 ˘ 3.2

kg/m2; this group performed certain types of physical activity so that noise immunity
could be investigated in different leads. The second group consisted of 10 patients (4
women) with AF, 64.3 ˘ 8.5 years old, with body mass index of 30.0 ˘ 5.1 kg/m2; this
group did not perform any physical activity.

In order to investigate the peak-to-peak atrial amplitude, the healthy volunteers were
asked to sit at rest for one minute. Then, they were instructed to perform two consecu-
tive standardized physical activities that stimulate electromyographic noise and baseline
wander, namely,

• holding a 1 kg weight with each straight arm horizontally when standing, and

• performing workout on an elliptical trainer.

The ECG was recorded simultaneously for each type of activity, using the Quark
T12x Telemetry Stress Testing ECG recording device (Cosmed, Rome, Italy). The bipolar
leads of the studied lead systems were obtained as a difference of the voltages recorded at
the sites of the corresponding electrodes (Fig. 4.7).

The atrial and ventricular amplitudes were determined for each volunteer by finding
the mean peak-to-peak amplitude in consecutive beats of 1 min ECG segments recorded
at rest. Electromyographic noise was extracted by high-pass filtering (cut-off frequency
at 15 Hz) of the signals recorded during rest and physical activity, followed by blanking
of the QRS complexes in an interval of 200 ms centered around the R-wave (Welinder et
al., 2004). Then, the root-mean-square value (ζEMG) of the high-pass filtered signal was
computed. Baseline wander was extracted by low-pass filtering (cut-off frequency at 0.5
Hz) of the signals recorded during rest and physical activity, and quantified by the root-
mean-square value (ζBW ) of the low-pass filtered signal. The signal processing needed
for parameter estimation is illustrated in Fig. 5.20.

The atrial amplitude (AAA), the ventricular amplitude (AV A), and the three ratios
AAA{AV A, AAA{ζEMG, and AAA{ζBW were estimated for each lead. For AF patients,
only amplitude-related properties were computed, thus excluding information on elec-
tromyographic noise and baseline wander. Since relatively large amplitude f-waves can
be observed in the bipolar limb lead II (Nault et al., 2009), this lead was included for
comparison. The mean peak-to-peak atrial amplitude was computed in individual f-waves
present in the TQ interval so that the influence of ventricular activity was minimized. The
overall results are expressed as mean and two-sided confidence interval (95 %).
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a)
AAA

AVA

b)

EMG

c)

BW

Fig. 5.20. Illustration of a) atrial and ventricular amplitudes (AAA and AV A, respectively), b)
electromyographic (EMG) noise, and c) baseline wander (BW) for three different ECG signals

5.5.2 Properties of atrial and ventricular amplitude

Examples of ECGs recorded with different leads during rest and physical activity
show that weight holding considerably increases the electromyographic noise level, while
exercising on an elliptical trainer induces baseline wander, see Fig. 5.21. In addition, both
L1 and L2 have much lower amplitudes than do the modified Lewis leads LM1 and LM2.

L1

L2

L3

LM1

LM2

ES

a) b) c)

Fig. 5.21. ECGs recorded during a) rest, b) weight holding, and c) exercise on an elliptical trainer

Figure 5.22 a) shows that the atrial amplitudes (i.e., the P-waves) in LM1 and ES

are nearly 3 times larger than in L1 and L2. However, due to the markedly suppressed
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ventricular amplitude (Fig. 5.22 b), the Lewis leads produce the largest ratio AAA{AV A

with 0.24 ˘ 0.04 and 0.23 ˘ 0.04 for L1 and L2, respectively (Fig. 5.22 c). Lead LM1

has a ratio AAA{AV A of 0.23 ˘ 0.04 which is similar to that of the original Lewis leads.
However, the ratio AAA{AV A of ES is significantly lower (0.15 ˘ 0.02, p ă 0.001).
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Fig. 5.22. a) Atrial amplitude AAA, b) ventricular amplitude AV A, and c) atrial-to-ventricular
amplitude ratio AAA{AV A in healthy volunteers. The results are presented as mean ˘ CI (95 %);

˚ p ď 0.05, ˚˚ p ď 0.001, NS for p ą 0.05

Figure 5.23 shows signals recorded with LM1 and LM2 during AF (Fig. 5.23 a) and
atrial flutter (Fig. 5.23 b), both exhibiting transitions to sinus rhythm. It is obvious that
LM1 has much larger atrial amplitude than does LM2, both for AF and atrial flutter.

0 5 10 15 20 25 30

Time, s

L
M1

L
M2

L
M1

L
M2

a)
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1 mV

1 mV

Fig. 5.23. Leads LM1 and LM2 recorded during a) AF and b) atrial flutter. In both examples, AF
transitions into sinus rhythm at 15 s

Tables 5.6 and 5.7 show that AAA and AAA{AV A exhibit similar tendencies for AF
as for sinus rhythm. The atrial amplitude (i.e., the f waves) in LM1 is about 50 % larger
than in lead II , being 0.15 ˘ 0.08 mV and 0.10 ˘ 0.06 mV, respectively, while the ratio
AAA{AV A in LM1 is more than 3 times larger than in II (p ă 0.05).
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Table 5.6. Results from AF patients: atrial amplitude (AAA, mV) in leads LM1, LM2, L3 and II .
The results are presented as mean ˘ CI (95 %)

Subject no. LM1 LM2 L3 II

1 0.16 0.06 0.16 0.08
2 0.29 0.04 0.14 0.05
3 0.11 0.02 0.10 0.09
4 0.13 0.04 0.11 0.11
5 0.31 0.05 0.30 0.20
6 0.05 0.02 0.04 0.02
7 0.02 0.02 0.02 0.02
8 0.22 0.07 0.15 0.11
9 0.02 0.02 0.02 0.02
10 0.19 0.08 0.19 0.25
Total 0.15 ˘ 0.08 0.04 ˘ 0.02 0.12 ˘ 0.06 0.10 ˘ 0.06

Table 5.7. Results from AF patients: atrial-to-ventricular amplitude ratio (AAA{AV A) in leads
LM1, LM2, L3 and II . The results are presented as mean ˘ CI (95 %)

Subject no. LM1 LM2 L3 II

1 0.31 0.03 0.07 0.08
2 0.23 0.03 0.06 0.02
3 0.08 0.02 0.06 0.04
4 0.42 0.11 0.20 0.15
5 0.24 0.06 0.19 0.07
6 0.12 0.02 0.03 0.01
7 0.04 0.01 0.01 0.02
8 0.27 0.06 0.11 0.10
9 0.02 0.01 0.01 0.01
10 0.43 0.13 0.18 0.16
Total 0.22 ˘ 0.11 0.05 ˘ 0.03 0.09 ˘ 0.05 0.07 ˘ 0.04

5.5.3 Influence of physical activity

The results show that L2 has the lowest overall electromyographic noise level, while
L1 is twice as susceptible to electromyographic noise as is L2 (see Fig. 5.24 a, weight
holding). On the other hand, LM1 produces the largest ratio AAA{ζEMG, being larger
than the Lewis leads with statistical significance (Fig. 5.24 b). When compared to ES,
LM1 has a larger ratio AAA{ζEMG (p ă 0.05) during weight holding, indicating that the
main advantage of LM1 is achieved when the physical load increases.

Figure 5.25 demonstrates that the atrial-to-baseline wander level ratio AAA{ζBW

does not change significantly in any of the leads designed for enhanced atrial activity.
Only LM2 exhibits a significantly lower ratio AAA{ζBW than do the other leads (p ă

0.001).
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Fig. 5.24. a) Electromyographic noise level ζEMG and b) atrial-to-electromyographic activity
ratio AAA{ζEMG in healthy volunteers. The results are presented as mean ˘ CI (95 %); ˚ p ď

0.05, ˚˚ p ď 0.001, NS for p ą 0.05

5.5.4 Discussion

Sir Thomas Lewis was the first to introduce ECG leads for the purpose of enhancing
the atrial activity observed during atrial fibrillation (Lewis, 1913). Although the Lewis
leads have been rarely used in clinical practice, the resulting signals may still have the
potential to facilitate automated AF detection and analysis. The present study shows that
L1 and L2 exhibit a high atrial-to-ventricular amplitude ratio, however, the enhancement
of atrial activity is achieved at the expense of a much reduced ventricular amplitude, in-
stead of an increased atrial amplitude, which is to be preferred. Hence, ECGs recorded
with the Lewis leads are more susceptible to electromyographic noise. Despite that L1

and L2 are proximal, L1 is twice as susceptible to electromyographic noise as is L2, and
therefore L2 should be considered as the preferred lead. For long-term monitoring, where
high noise levels may occur, the use of LM1 can be beneficial, since the results show that
it has 2.5 times larger atrial amplitude than does L2, therefore offering better immunity to
electromyographic noise.

The last findings show that the largest amplitude of atrial activity is obtained when
the distance between electrodes is 12-18 cm (Nedios et al., 2014). Depending on torso
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Fig. 5.25. a) Baseline wander level ζBW and b) atrial-to-baseline wander amplitude ratio
AAA{ζBW in healthy volunteers. The results are presented as mean ˘ CI (95 %); NS for p ą 0.05

size, the distance between the electrodes of the modified Lewis lead LM1 was 14-20 cm,
while the distance for the original Lewis leads L1 and L2 was less than half of this. Since
the leads LM1, L1, and L2 are roughly along the same axis with respect to the heart’s
electrical vector, differences in distance between electrodes may be the primary reason for
an atrial amplitude which is 2.5 times larger in lead LM1 than in the original Lewis leads
L1 and L2.

The modified Lewis lead system was developed for the purpose of enhancing atrial
activity, and is thus unsuitable for evaluation of ventricular beat morphology, except for
basic information such as the occurrence times of the R-waves. Since r interval irregular-
ity, together with P-wave absence and f-wave presence, represent the key features of AF,
LM1 is suitable for automated AF detection.

Leads LM1, LM2 and L3 of the modified Lewis lead system are obtained by using
a standard ECG device with the Einthoven extremity leads I , II , and III . Lead LM1

is obtained by placing the right arm electrode over the upper end of the sternum and
left arm electrode to the right side of the sternum at the 5th intercostal space, thus the
tracing observed in lead I is that of lead LM1. Lead LM2 is obtained by placing the right
leg electrode in the midaxillary line on the left side of the body at the level of the 5th

intercoastal space (the tracing observed in lead II is that of lead LM2). Since LM1 and
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LM2 form a triangle, the modified lead L3 is computed by the recording device, and is
observed in lead III .

The analysis of the f-waves in the surface ECG has been found useful for predict-
ing intervention outcome, as well as for monitoring drug effects (Platonov et al., 2014).
Typically, V1 is used for f-wave analysis since this lead usually offers the largest f-wave
amplitude. In addition, it has been shown that the “dominant” AF frequency in V1 offers a
good match to the fibrillatory frequency of the right atrium (Bollmann et al., 1998; Holm
et al., 1998). While LM1 is associated with a much reduced ventricular amplitude, LM1

may be used for determining the dominant AF frequency. Considering that LM1 is closely
positioned to the right atrium, the spectral content of the f-waves in LM1 “views” the AF
originating in the right atrium. However, it remains to be shown how the dominant AF
frequency of LM1 relates to the intra-atrial recordings.

In this study, standardized physical exercises for inducing electromyographic noise
and baseline wander were applied for evaluating the noise properties of the different leads.
Out of the many different types of exercises causing motion artifacts (Welinder et al.,
2004; Kearney et al., 2007), weight holding and workout on an elliptical trainer were
selected, since both these activities cause large alterations in the ECG signal. Although
such high physical load is rare in daily life among the elderly, relatively intensive physical
exercises were selected so that situations such as lifting heavy objects, jogging, or even
brushing teeth could be simulated. However, realizing that intensive physical activity
could be risky to perform for elder participants with AF, only the healthy volunteers were
asked to perform physical exercises.

Similar to the study comparing the EASI and Mason-Likar ECG lead systems (Welin-
der et al., 2004), no significant difference was found between the atrial enhancing leads
with respect to susceptibility to baseline wander. Only leads L1 and L2 of the original
Lewis lead system were associated with lower baseline wander level during rest (p ă

0.05). This result supports the assumption that variations in electrode impedance, induced
by physical activity, are likely caused by physiological factors such as respiration and per-
spiration, and thus have a similar influence in all leads. However, the level of baseline
wander is likely to be lower for ECG leads with smaller distances between the electrodes,
i.e., L1 and L2.

The electrode placement of LM2 is common among the chest-strap monitors used
for heart rate recordings and analysis. Interestingly, our study shows that such electrode
placement gives the lowest ratios of AAA{AV A, AAA{ζEMG, and AAA{ζBW , and is thus
the worst option for analysis of atrial activity. On the other hand, LM2 is associated with
a 5 times lower atrial-to-ventricular amplitude ratio than is LM1; this finding is important
when f-wave extraction is performed employing an adaptive filtering approach (i.e. echo
state network) where a lead with negligible atrial activity is required.

The major limitation of the study is the small number of AF patients, and the rela-
tively young cohort of healthy volunteers, which preferably should cover a larger span of
age.
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5.6 Conclusions of the chapter

1. Five clinical databases containing electrocardiogram signals with AF, sinus rhythms
and other arrhythmias were selected for developing and testing the performance of
the proposed methods for AF detection. All AF databases contain mostly very long
AF episodes (ě 30 s), thus are unsuitable for testing the performance of brief AF
detection. Therefore, due to the lack of annotated databases with brief AF episodes,
a simulation model based on real ECGs has been proposed. A simulation princi-
ple allows researchers to control essential properties of the simulated signals, i.e.,
AF episode duration, percentage of atrial premature beats, and noise level. The
proposed paroxysmal AF simulation model is useful for quantitative evaluation of
methods developed both for AF detection and atrial activity extraction.

2. Despite its very simple structure, the developed r-based detector performs better
on the MIT-BIH Atrial Fibrillation database than do existing detectors, with high
sensitivity and specificity (97.1 % and 98.3 %, respectively). The detector can be
implemented with just a few arithmetical operations and does not require a large
memory buffer, due to the short analysis window.

3. When compared to average beat subtraction, being the most widely used method for
ventricular activity cancellation, the performance by an echo state network based
atrial activity extraction algorithm is found to be significantly better, both in time
and frequency domain. The estimates of dominant AF frequency are considerably
more accurate for f-wave amplitudes ď 30 µV compared to the AF estimates based
on average beat subtraction.

4. The results on brief AF detection show that episodes with as few as 5 beats can
be reliably detected by the proposed brief AF detector with a classification ratio
of 88.3 %, compared to 81.8 % for a detector based on rhythm information only
(the coefficient of sample entropy); this difference in classification ratio increases
when atrial premature beats are present. The results also show that the performance
remains essentially unchanged at noise levels up to 100 µV RMS.

5. The derived modified Lewis lead has nearly 3 times as large atrial amplitude as
the original Lewis leads, and is associated with 50 % higher atrial-to-ventricular
amplitude ratio than that of the ES lead. Furthermore, the modified Lewis lead
exhibits the best atrial-to-electromyographic activity ratio in healthy volunteers.
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6 CONCLUSIONS

1. A low-complexity algorithm for detection of paroxysmal atrial fibrillation in contin-
uous long-term monitoring devices has been developed. The proposed atrial fibril-
lation detector, despite its extreme simplicity, offers better performance than do the
detectors described in the literature. An important feature of the detector is its use
of a short window, only 8 beats, facilitating the detection of brief, subclinical atrial
fibrillation episodes. The detector is particularly well-suited for implementation in
a battery-powered device, i.e., an external or implantable event recorder, thanks to
the very few arithmetical operations required for each r interval.

2. The echo state neural network based method for atrial activity extraction during
atrial fibrillation has been developed. Based on simulated signals, as well as elec-
trocardiogram examples with atrial fibrillation, the results demonstrate that the han-
dling of small f-waves, substantial variation in beat amplitude and morphology,
occasional ectopic beats, and short recordings are all strengths of the echo state
network. When comparing performance to that of averaged beat subtraction, the
echo state network is found to perform better for all considered cases, both when
quantified in the time and frequency domain. The echo state network is suitable for
implementation in a system which operates in real time, i.e., for long-term atrial
fibrillation monitoring.

3. A method based on the combination of parameters characterizing atrial activity,
ventricular activity, and prevailing noise level has been proposed for the reliable
detection of brief episode atrial fibrillation. The results show that atrial fibrillation
episodes as short as 5 beats can be detected, and the performance is essentially
unchanged for noise levels up to 100 µV RMS. The proposed detector performs
better than does the detector exploring the coefficient of r interval sample entropy,
especially when atrial premature beats are present. The detector is expected to
have clinical relevance since brief atrial fibrillation episodes can be reliably detected
in asymptomatic cases and trigger an event recorder. The detector should also be
suitable for integration in eHealth services where analysis of long-term recordings
is offered.

4. Electrocardiogram lead configuration (the modified Lewis lead system) for ambula-
tory monitoring of atrial fibrillation has been derived. The modified Lewis lead of-
fers the best atrial-to-electromyographic activity ratio and produces nearly 3 times
larger amplitude of the atrial activity than the original Lewis leads. The results
suggest that the proposed modification of the Lewis lead system has potential to
improve ambulatory monitoring of atrial arrhythmias.
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R., SANDHALL, L., et al. Non-invasive assessment of atrial refractoriness dur-
ing atrial fibrillation in man–Introducing, validating, and illustrating a new ECG
method. Cardiovascular Research. 1998, 38, 69-81. ISSN 0008-6363.

103. HOLTER, N. J. New method for heart studies: Continuous electrocardiography of
active subjects over long period is now practical. Science. 1961, 134, 1214-1220.
ISSN 0036-8075.

104. HORVATH G., GOLDBERGER J.J., and A.H. KADISH. Simultaneous occurrence
of atrial fibrillation and atrial flutter. Journal of Cardiovascular Electrophysiology.
2000, 11, 849-858. ISSN 1045-3873.

105. HUANG, C., YE, S., CHEN, H., LI, D., HE, F., and Y. TU. A novel method for
detection of the transition between atrial fibrillation and sinus rhythm. IEEE Trans-
actions on Biomedical Engineering. 2011, 58(4), 1113-1119.
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136. LAGUNA, P., JANÉ, R., and CAMINAL, P. Automatic detection of wave bound-
aries in multilead ECG signals: Validation with the CSE database. Computers and
Biomedical Research. 1994, 27, 45-60. ISSN 0010-4809.
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Išleido Kauno technologijos universitetas, K. Donelaičio g. 73, 44249 Kaunas
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