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INTRODUCTION

Relevance of the research

Consciousness refers to the state of being aware of and able to experience
sensations, thoughts, and one’s environment, which encompasses the subjective
aspects of human experience, including perception, self-awareness, and the ability
to process information [1]. Consciousness is a multifaceted construct, spanning a
continuum from wakefulness, characterized by responsiveness to external stimuli and
cognitive engagement, to altered states where individuals may experience a decreased
cognitive function or difficulty being easily aroused [2]. As an individual transits from
wakefulness into altered states of consciousness, e.g., fatigue, sleep, and anesthesia,
consciousness undergoes dynamic shifts associated with distinct neural patterns and
subjective experiences [3]. Thus, analyzing the consciousness level holds paramount
significance in contexts such as, but not limited to, sleep assessment, fatigue detection,
and the depth of anesthesia monitoring, with far-reaching implications for practical and
medical applications.

Within the sleep assessment domain, sleep quality is intricately tied to the
consciousness level experienced during rest, offering insights into the depth and
character of an individual’s rejuvenating repose [4]. According to a recent study,
almost 25% of the European Union’s population suffers from some form of sleep
disorder, which adversely influences physical and mental health [5]. The associated
treatment costs and the inefficiency of individuals due to poor sleep quality further
underscore the importance of addressing sleep-consciousness-related issues.

Fatigue detection is another critical application where consciousness analysis
becomes indispensable. Fatigue significantly impairs the cognitive function and
alertness [6]. Globally, it is estimated that 14-20% of road accidents occur due to
driver fatigue [7]. Just in the United States, a study by the AAA Foundation for
Traffic Safety approximated that, annually, more than 328,000 crashes are caused
by driver fatigue, of which 109,000 result in an injury and about 6,400 are fatal
[8]. Analyzing consciousness levels facilitates the early detection of fatigue-related
changes, enabling timely interventions to prevent accidents. By examining the intricate
interplay between consciousness and fatigue, researchers can develop advanced driver
monitoring systems that enhance road safety.

In the medical field, monitoring the depth of anesthesia is vital for ensuring
patient safety during surgical procedures. Analyzing different consciousness levels
aids anesthesiologists in maintaining an optimal balance between keeping patients
unconscious and minimizing potential side effects. This delicate balance not only
contributes to successful surgeries but also prevents complications associated with
insufficient or excessive anesthesia [9, 10]. In addition, continuous monitoring of
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consciousness levels during anesthesia can provide economic benefits by preventing
the wastage of anesthetics, which has been identified as a significant contributor to the
overall cost of anesthesia procedures [11]. Thus, such a monitoring benefits the patient
and promotes the efficient use of resources in the healthcare system.

Brain, with its intricate neural networks and complex interactions, is the central
hub for generating conscious experiences [12]. Neuroscientific evidence consistently
correlates specific brain activities with conscious phenomena, thereby highlighting
the brain’s pivotal role. Studies involving brain injuries, neuroimaging, and neural
stimulation affirm the brain as the biological substrate of consciousness [13].
Electroencephalography (EEG) is paramount for analyzing levels of consciousness,
providing real-time insights into brain states with high temporal resolution [14].
Its non-invasive nature, portability, and cost-effectiveness make EEG indispensable
for studying the dynamics of consciousness across various contexts, from medical
applications to cognitive research.

EEG electrodes are strategically placed on the scalp according to standard
systems, like the 10-20 and 10-10 systems, which ensure consistent and reproducible
measurements. Named based on their underlying brain regions, these electrodes cover
critical areas including the frontal (F), temporal (T), parietal (P), occipital (O), and
central (C) regions. The positioning follows a systematic nomenclature: odd numbers
(1, 3, 5, 7) signify locations on the left hemisphere, while even numbers (2, 4, 6, 8)
denote positions on the right. Electrodes placed along the midline of the scalp are
labelled with the letter *z’ (zero), such as Fz (frontal midline), Cz (central midline),
and Pz (parietal midline) (Fig. 1) [15].

Fig. 1. EEG electrode placement based on the 10-10 system, adopted from [15].

The gap in current research and the potential strategy

While the literature has shown promising results in studying consciousness
levels by using EEG, a significant portion of these studies have focused on employing
multichannel recordings. This approach adds complexity to wearable instrumentation
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and poses challenges for long-term recordings. Furthermore, this configuration not
only limits the scalability of EEG studies but also hinders practical applications in
real-life scenarios. The intricate setup process and the need for expert oversight
make widespread use beyond controlled research environments impractical. Moreover,
conventional multichannel EEG systems are prohibitively expensive, making them
largely inaccessible for daily use by most individuals. In essence, the focus on
multichannel EEG recordings may inadvertently restrict the translation of findings
from the laboratory to the real-life scenarios. For EEG-based consciousness level
studies to have meaningful applications in daily life, exploring a more affordable,
simpler, and user-friendly configuration that can be seamlessly integrated into people’s
routines is crucial.

A possible remedy to overcome the presently discussed issues is the employment
of low-cost portable single frontal channel EEG headbands. These devices offer
significant advantages over conventional ones in terms of accessibility, usability,
affordability, and real-world applications. By being lightweight and user-friendly,
these devices provide a simplified yet effective means of monitoring the brain activity,
thereby making the EEG technology more accessible to a broader population. Their
affordability makes them particularly appealing for widespread adoption, opening up
opportunities for individuals to monitor their cognitive states at home or in various
daily-life settings. Furthermore, the simplicity of a single frontal channel design not
only reduces the overall cost but also mitigates challenges associated with complex
installations and expert oversight, facilitating easy deployment by users with minimal
training. Furthermore, recording EEG from the frontal cortex can be more convenient
since it is a non-hair-bearing area, i.e., less susceptible to noise, and can provide
the user with more comfort by allowing them to use the headrest during the daily
life. An example of such a system is NeuroSky’s MindWave headset, which offers
a user-friendly interface for educational and research purposes, enabling the study of
brainwave patterns in diverse environments (Fig. 2) [16, 17].

'
INION

Fig. 2. Placement of NeuroSky’s MindWave headset electrodes according to the 10-20
international system, adopted from [16,17].
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Scientific-technological problem: Despite the advantages of low-cost wearable
EEG systems mentioned above, the limited spatial coverage of a single frontal channel
may reduce the richness and specificity of the recorded brain signals, potentially
compromising the comprehensiveness of the neural activity information related to
different consciousness levels.

Research question: How can the limitation of spatial coverage in single frontal
channel EEG recordings be compensated for capturing changes in consciousness
levels?

Working hypothesis: Decomposing a single frontal EEG signal into its
sub-bands and applying nonlinear analysis may compensate the spatial coverage
limitation by capturing distinct complex dynamics associated with changes in
consciousness levels.

Research object

This research focuses on the development and investigation of signal processing
algorithms for characterizing consciousness levels in sleep assessment, fatigue
detection, and anesthesia monitoring using a single frontal EEG channel.

The aim of the research

This doctoral thesis aims to propose methods for monitoring different levels
of consciousness using low-cost portable EEG devices, with a focus on real-life
applications.

The objectives of the research

1. To develop algorithms to eliminate electrical shifts, linear trends, and eye
blink artifacts commonly appearing in EEG data recorded by low-cost portable devices.

2. To develop an algorithm for discrimination between wakefulness and sleep
Stage I by using a single frontal EEG channel, thereby enabling the estimation of sleep
onset latency, pivotal for assessing the sleep quality.

3. To develop algorithms specifically tailored for the detection of driver fatigue
by using current commercial low-cost portable EEG devices.

4. To develop algorithms for monitoring the depth of anesthesia by using
commercially available low-cost portable EEG devices.

Scientific novelty

Firstly, this doctoral thesis proposes two new low-complexity algorithms
specifically developed to eliminate common artifacts in short segments of
single-channel EEG recordings. Unlike existing methods, these algorithms are
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optimized for semi-real-time use in portable EEG devices, ensuring robust data
analysis within brief time windows, which is crucial for enhancing the reliability of
EEG analysis in real-world applications.

Secondly, this thesis introduces a novel perspective on the role of eye blink
artifacts in prefrontal EEG signals for detecting driver fatigue. This is the first study
to demonstrate that eye blink artifacts can have both beneficial and detrimental effects
on EEG signals, challenging the traditional view that these artifacts are merely noise.
Understanding these dual effects could lead to improved algorithms for driver fatigue
detection, making the findings significant for enhancing the accuracy of EEG-based
fatigue monitoring.

Thirdly, this thesis explores the use of nonlinear analysis of EEG sub-bands to
classify different levels of consciousness for sleep assessment, driver fatigue detection,
and depth of anesthesia monitoring. By applying this analysis with the channel
configurations of commercial portable EEG devices, the thesis provides new insights
into the real-life applications of these technologies.

In contrast to the majority of studies that utilized only one database for
algorithm development and testing, this thesis utilizes multiple databases for both
stages. This is particularly significant when incorporating nonlinear features such as
sample entropy (SampEn), which necessitate parameter tuning before computation.
Addressing the critical issue of the interchangeability of tuned nonlinear features across
different databases is essential for ensuring the generality of the proposed method, a
consideration often overlooked in the current state-of-the-art methods.

Practical significance

The outcomes of this thesis have practical implications as follows:

1. The proposed artifact reduction algorithms can facilitate improving the data
quality for portable EEG-based algorithms that analyze the consciousness levels during
daily activities. In addition, the proposed algorithms with their adjusted parameters can
be used for improving the quality of EEG signals for other applications.

2. The proposed feature set for discriminating wakefulness for sleep Stage I has
the potential to be used for estimation of the sleep onset latency, which is of great
importance index for assessing the quality of sleep and insomnia detection.

3. The proposed algorithms for driver fatigue detection allow for the extraction
of eye blink features while simultaneously eliminating them from EEG signals. These
algorithms are compatible with both single and multi-channel EEG systems and can be
utilized in a range of EEG applications, particularly those requiring concurrent analysis
of brain activity and eye blinks.

4. The proposed parameter-free feature set for monitoring the depth of
anesthesia, while being efficient, offers the opportunity for easy experiment replication
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and performance enhancement through the inclusion of additional features.

Approval of the results

The doctoral thesis relies on seven papers published in international scientific
journals with the impact factor referred in the Clarivate Analytics Web of Science
database, while, in total, the results have been published in ten scientific papers. The
essential results have been presented in six international conferences.

In 2021 and 2022, promotional scholarships for academic research, granted by
the Research Council of Lithuania, were received. In 2021, 2022, and 2023, the awards
of the most active PhD student in the field of Electrical and Electronic Engineering,
granted by Kaunas University of Technology, were received. In 2021 and 2022, three
incentive scholarships for high quality publications, granted by Kaunas University of
Technology, were received.

In 2023, one promotional scholarship for academic research in a global
competition, granted by the IEEE Signal Processing Society, and three student travel
grants for (i) a research visit to Tokyo University of Agriculture and Technology,
granted by the Research Council of Lithuania, (ii) participation in the computational
neuroscience academy summer school, granted by the Polish National Agency for
Academic Exchange, and (iii) participation in the 18th IEEE International Symposium
on Medical Measurements and Applications, granted by the IEEE Instrumentation and
Measurement Society, were received.

In 2021 and 2022, two published papers from this thesis were recognized
as Featured Articles by the editorial boards of the IEEE Transactions on Neural
Systems and Rehabilitation Engineering and IEEE Journal of Biomedical Health and
Informatics journals.

The statements presented for defense

1. The kurtosis and skewness serve as highly effective indicators for detecting
electrical shifts and linear trends, and eye blink artifacts within a short segment of a
single EEG channel.

2. Nonlinear features of a single frontal EEG channel outperform conventional
relative band power analysis for discriminating between wakefulness and sleep Stage
I, which have similar temporal and spectral characteristics.

3. Eye blinks in prefrontal EEG channels serve as a multifaceted component,
acting both as a source of valuable information and as an artifact in the detection of
driver fatigue.

4. The satisfactory performance of the proposed parameter-free feature set for
monitoring the depth of anesthesia via a portable EEG confirms the possibility of an
affordable alternative for such monitoring in developing countries.
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Structure of the doctoral thesis

This doctoral thesis is organized as follows: Section 1 is dedicated to the
elimination of common artifacts that appear in wearable EEG devices, namely,
electrical shifts and linear trends, and eye blinks. This section provides a detailed
explanation of the proposed algorithms, followed by the obtained results for both
semi-simulated and real EEG data. Section 2 presents a nonlinear feature set for
discriminating between wakefulness and sleep Stage I, validated on four databases with
distinctive characteristics. In Section 3, two algorithms for detecting driver fatigue are
proposed. These algorithms are based on the simultaneous analysis of EEG and eye
blinks in prefrontal EEG signals. Sections 4 describes two algorithms for monitoring
the depth of anesthesia using a single frontal EEG channel. The doctoral thesis wraps
up with conclusions in Section 5.

Sections 1 to 4 of the thesis have been quoted verbatim from the previously
published articles: [18-27]. The thesis consists of 160 pages, 40 figures, 17 tables,
and 237 references.
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1. EEG ARTIFACT REMOVAL

Analyzing EEG signals involves dealing with various artifacts, broadly
categorized into physiological and non-physiological types. Physiological artifacts
originate from the body’s natural processes, such as muscle activity, eye movements,
and cardiac activity, which can introduce unwanted signals into EEG recordings.
On the other hand, non-physiological noise includes environmental interference,
equipment artifacts, and other external factors that can distort EEG signals [28]
(Fig. 1.1).

Eye blink Linear trend

Electrical shift

¢

Eye movement

o

Muscle

| 1,1, High frequency, high amplitude
LY

O
S S A\("«,« Ny M
L O L |

00

Fig. 1.1. Example on artifacts in EEG signals, adopted from [28].

Although the advent of portable single frontal channel EEG devices has
transformed health monitoring and brain-computer interfacing, particularly in indoor
and non-clinical environments, specific challenges regarding artifact handling arise
when employing such devices due to continuous monitoring in real-world settings.
Common artifacts in these devices include electrical shifts-linear trends (ESLT),
and eye blinks. ESLT can result from electrode shifts or a temporary decline in
the skin-electrode contact, leading to alterations in the baseline EEG signal. Eye
blinks, typical physiological phenomena, pose a challenge due to their large amplitude
compared to EEG signals.

1.1. Electrical Shift and Linear Trends

Recorded EEG signals with a portable system are more susceptible to
non-physiological artifacts than those recorded in laboratory or clinical environments
[29] due to the nature of data recording where the subject is free to move and perform
their daily-based tasks. While a linear filter could remove the majority of these artifacts,
some require more advanced techniques as they may appear in all EEG frequency
bands [30]. Amongst them are ESLT, which may arise due to electrode shifts or a
temporary decline of the skin-electrode contact, induced current transient drifts, and
electrode pop [31-34].

Unfortunately, the elimination of ESLT artifacts from EEG signals has not been
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widely regarded in the recent literature [30, 35-37]. Three independent component
analysis (ICA) algorithms, named Infomax, SOBI, and FastICA, were firstly presented
for EEG denoising with satisfactory ESLT removal [33]. Later, two fully automatic
algorithms based on the discrete wavelet transform (DWT) and ICA, known as
automatic wavelet independent component analysis (AWICA) [31] and enhanced
AWICA (EAWICA) [34], were proposed for the filtering of several types of EEG
artifacts including ESLTs. ICA-based algorithms cannot automatically reject the
contaminated components and require several artifact markers to separate them from
the clean ones. Artifact markers in such algorithms are usually pre-trained and
are not adaptive to other databases [38]. In addition, the mentioned algorithm are
computationally expensive, which is not favorable for ambulatory or semi-real time
applications [30,33,37].

In [39], a multi-channel Wiener filter is proposed to eliminate ESLT artifacts
from EEG signals [39]. Although it outperformed Infomax ICA, FastICA and
canonical component analysis algorithms, the mentioned algorithm needs initial
calibration; the user is required to mark some artifactual and non-artifactual segments
manually to train the algorithm. Recently, artifact subspace reconstruction algorithm
has been proposed for automatic elimination of artifacts in EEG signals, tackling the
initial calibration and manual setting of the artifact markers [38]. Its performance,
however, relies on a sufficient amount of EEG data and cannot be employed for the
single EEG channel.

The proposed algorithms for ESLT removal, albeit with satisfactory performance,
were designed for either offline or multi-channel EEG processing. Thus, efficient
algorithms for automatic removal of ESLT in a short segment (i.e., 5s) of single-to-few
EEG channels, suitable for portable and low-cost devices are yet lacking. For this
aim, wavelet-based (WT) algorithms can be suitable as they overcome the requirement
of the initial calibration, several pre-trained artifact markers, and a large amount of
EEG channels for filtering. While the effectiveness of WT-based approaches has been
demonstrated for EEG signal denoising [37,40-42], their use for the elimination of
ESLT artifacts in EEG signals has not been explored or validated in literature.

Amongst WT algorithms, stationary wavelet transform (SWT) is more effective
than DWT for EEG preprocessing since it is time invariant and provides a better
time resolution for the artifact characterization. Thus, a smoother EEG is derived
after thresholding in the wavelet domain [43,44]. One of the main challenges in the
SWT-based denoising algorithm is to select the optimal level of the decomposition,
as EEG signals sampled at different rates may require a different number of
decomposition levels [30, 35-37]. The most straightforward approach is to use the
full tree decomposition of the contaminated signal and then filter the artifactual
components. However, such an approach yields unnecessary computational burdens.
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To avoid full decomposition, we introduce a kurtosis-based index for automatic
adjustment of the optimal decomposition level of SWT, regardless of the sampling
frequency. Using such an index can avoid unnecessary decomposition, make the
algorithm automatic, and accelerate filtering. The feasibility of the proposed algorithm
is validated on EEG signals recorded at different sampling rates and compared to the
performance of AWICA and EAWICA algorithms.

1.1.1. The proposed SWT-kurtosis algorithm

The SWT uses high-pass and low-pass filters to decompose a signal into low
and high-frequency bands, designated as the approximation a(n) and detail d(n)
components, respectively. Two parameters must be specified before the SW'T process:
the wavelet basis function and the level of decomposition. The similarity between
the wavelet basis function and the desired signal is the criterion for such a selection.
Here, Daubechies 1 is selected as the basis wavelet function since it resembles the
morphology of ESLT artifacts (Fig. 1.2).

Daubechies Wavelet Function (dbl)

Fig. 1.2. The visual presentation of Daubechies 1 wavelet function.

Determining the decomposition level plays the principal role in designing an
automatic SWT-based algorithm. To this end, the kurtosis is employed as the criterion
to stop SWT decomposition automatically once it reaches the artifact components. In
principle, kurtosis values below 3 can be attributed to either persisting or abruptly
varying sample values in EEG recording. As EEG signals are quite dynamic, such
behavior cannot be the representative of the brain activity [33]. Thus, it is expected
that the prevalence of ESLT artifacts in EEG signals results in a platykurtic distribution
(Fig. 1.3) [33,45].

The ESLT artifacts consist of low and high-frequency components. Thus, these
artifacts emerge in both detail and approximation components of SWT. During the
SWT decomposition process, the kurtosis of approximation components is calculated
at every two consecutive levels. The absolute difference 1 of the computed kurtosis
values is then used as the decisive factor whether to terminate or continue the SWT
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Fig. 1.3. EEG signals: contaminated (a), artifact-free (b) and the corresponding
distributions (c¢). k is the kurtosis value.

decomposition process. A4 is estimated as follows:
A= k; = k;_yl, (1.1)

where k is the kurtosis of the approximation components and j is the decomposition
level of SWT. If 1 > T, it is assumed that SW'T has reached the optimal decomposition
level for the artifact component filtering, thereby stopping the decomposition process.
The value of T is tuned based on the lowest error between the ESLT-free and filtered
EEG signals (see Section 1.1.3). The last approximation component, a,(n), is removed
to eliminate the low frequency components of the artifacts. Then, the obtained detail
components are denoised to remove the artifact’s high frequency components. Filtering
of the detail components is performed based on the following thresholding function
[37]:

dn), ifldm) <0

dy(n) (1.2)

0, otherwise

6 indicates the universal threshold estimated by:

_ median(ld(n)])
0= —5 75—\ 2logN, (1.3)

where d(n) is the detail component and N is the signal length in samples. The processed
EEG signal is then reconstructed by inverse SWT of the denoised detail components.
Algorithm 1 displays the step of the proposed SWT-kurtosis for the elimination of
ESLT artifacts.
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Algorithm 1: SWT-kurtosis for ESLT removal

Input: Noisy EEG z(n),
Output: Filtered EEG x(n)
Initialisation 1 < 0,j < 2
while true do
[di_1(n),a;_; (n)] «SWT(z(n),j—1)
[d;(n),a;(n)] «SWT(z(n),))

kj_ 1 eCALCULATEKURTOSIs(aj_l (n))

1:
2
3
4
5: kj «CaLcuLATEKURTOSIS(a 1;(n))
6
7
8
9

A e |kj—ki_yl
if 1 > T then
REMOVE aj(n)
: DENoISE d; (n), ..., d;(n) components with Eq. 1.2
10: X(n) <« INVERSE SWT(Denoised d; (n), ...,d;(n))

11: break
12:  else

13: jej+1
14:  end if

15: end while
16: return x(n)

Algorithms under comparison

The performance of the proposed algorithm is compared with the AWICA and
EAWICA algorithms. These algorithms combine the DWT and ICA methods, in which
DWT decomposes the EEG signal into its rhythms, followed by ICA for denoising.
Both algorithms apply a two-step procedure by employing kurtosis and Renyi’s entropy
to detect and eliminate artifacts from EEG signals. For this purpose, three artifact
markers must be set before processing. The finest parameters of the mentioned
algorithms are shown in Table 1.1. For more details about AWICA and EAWICA
algorithms, see [34].

Table 1.1. Finest artifact marker values for AWICA and EAWICA algorithms.

Algorithm Parameters
Thl Th2 Entropy order
AWICA 1 1.4 2
EAWICA 1.2 1 6
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Performance metrics

To assess the filtering performance, the normalized root mean square error
(NRMSE), the peak-signal-to-noise ratio (PSNR), and the correlation coefficient (CC)
between the ESLT-free and filtered EEG signals are computed. NRMSE is expressed
as follows:

VMSE(x(n) - (n))

NRMSE = -
max,,, — min

x 100, (1.4)

x(n)

where MSE is the mean square error, x(n) is the ESLT-free EEG signal and x(n) is
the filtered EEG signal. NRMSE shows the average amplitude difference between
the ESLT-free and filtered signal, where a smaller NRMSE corresponds to the better
quality of the filtered signal. PSNR (dB) is defined as follows:

maXx(n) ) (15)
VMSE(x(n) - &(n))

PSNR = ZOloglo(

PSNR is used to measure the peak error of the denoised signal. Essentially, PSNR
evaluates the reconstruction loss quality, where a higher PSNR indicates the better
quality of the reconstructed signal. CC is expressed as:

cC - COV(x(n),x(n))’ (1.6)

Gx(n)afc(n)

where cov and ¢ stand for the covariance and standard deviation, respectively. CC
evaluates the degree of linear dependence (phase distortion) between the ESLT-free
and filtered signal.

1.1.2. Data

To develop and test the performance of algorithms, both semi-simulated and real
data with different sampling frequencies have been employed. Table 1.2 describes the
characteristics of the used databases.

Table 1.2. Data description for developing and testing the proposed SWT-kurtosis
algorithm.

Database Mendeley CHB-MIT EEGLAB
Sampling rate 200 Hz 256 Hz 128 Hz
Data type Semi-simulated  Semi-simulated Real
Usage Development Test Test
Measurement type Uni-polar Bi-polar Uni-polar

27



Semi-simulated data for the algorithm development
To develop our algorithm and select the T value, generated ESLT artifacts are
added to artifact-free EEG signals collected from Mendeley semi-simulated EEG/EOG
database [46]. The EEG signals were recorded from electrodes positioned according
to the International System 10-20 and sampled at 200 Hz. These signals were carefully
recorded to avoid the emergence of undesired biological and external interference.
Ninety-five EEG epochs with a length of 5 seconds have been manually chosen from
different channels. To produce semi-simulated data, triangular and rectangular waves
with a different bandwidth and amplitudes have been added to the EEG signals as
follows:
z(n) =x(n) +axr(n) +vn), (L.7)

where z(n) is the contaminated EEG signal, x(n) is the artifact-free EEG, r(n) is the
ESLT artifact, and v(n) is a white noise (Fig. 1.4). The term « is used to indicate
that the artifact’s power may differ for all EEG channels. Therefore, the developing
set for the algorithm includes a total of 95 contaminated EEG signals with different
signal-to-noise ratios (SNR).

(a) (b)

0 Time (s) 5 0 Time (s) 5
(©) (d)

0 Time (s) 5 0 Time (s) 5

Fig. 1.4. Examples of artifact-free EEG (a), ESLT artifact (b), white noise (c¢), and
contaminated EEG signal (d).

It should be noted that these data are used exclusively at the development stage,
whereas, other databases are used for evaluating the algorithm’s performance.

Semi-simulated data for the algorithm testing

To quantify the performance of the algorithms, another experiment is conducted
with semi-simulated EEG signals sampled at 256 Hz with a length of 5 seconds
collected from the CHB-MIT Scalp EEG database [47]. Selecting EEG segments from
this database ensures a more realistic evaluation of the algorithm’s performance as
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these EEG signals contain other artifacts and waveform complexity. Considering four
a values, the testing set of the algorithms includes a total of 48x4=192 contaminated
EEG signals with different SNRs. It should be noted that the procedure to generate
semi-simulated data for the algorithm testing is identical to that described in the
previous section.

Real data

The EEG-LAB database [48] is comprised of EEG signals contaminated with
several real artifacts, sampled at 128 Hz with a length of 238 seconds. Epochs that
contain ESLT artifacts are manually selected to test the efficiency of the proposed
algorithm.

1.1.3. Results

Threshold value tuning

In order to achieve an effective threshold value, T, four values ranging from 0.05
to 0.2 with a step of 0.05 are tested. T is adjusted with respect to the lowest mean
NRSME and the highest mean CC values between 95 epochs of the ESLT-free and
filtered EEG signals from the first semi-simulated data, which, in this study, is 7 = 0.1,
as shown in Fig. 1.5. The semi-simulated CHB-MIT and real EEG-LAB data are
filtered by T = 0.1.
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Fig. 1.5. Meanz+standard deviation of CC (a) and NRMSE (b) between the ESLT-free
and filtered EEG signals for different 7 values of the development data.

Filtering results for the testing data

Fig. 1.6 depicts examples of contaminated, and filtered EEG signals using all
algorithms. In terms of visual inspection, the proposed algorithm shows enhanced
performance than the AWICA and EAWICA in the removal of the prominent ESLT
components.

Fig. 1.7 displays Beeswarm plot of the CC, NRMSE and PSNR values between
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Fig. 1.6. Examples of contaminated (a), and EEG signals filtered by the SWT-kurtosis
(b), AWICA (¢), and EAWICA (d) algorithms.

the ESLT-free and the filtered EEG signals using all algorithms. Compared to AWICA
and EAWICA, the SWT-kurtosis based algorithm displays higher mean of CC (0.92
vs. 0.58, 0.67) and PSNR (20.3 dB vs. 13.0, 13.6 dB), and lower mean of NRMSE
(5.4 vs. 12.2, 11.5) values, suggesting that the EEG signals filtered by the proposed
algorithm better approximate the original ESLT-free ones.

As for real data, Fig. 1.8 illustrates 5s long of 12 contaminated and filtered
EEG signals. Due to the lack of real artifact-free EEG signals, the resultant filtered
EEG signals from real EEG-LAB data are examined exclusively with the temporal
inspection [34, 39, 40, 49]. According to the visual assessment of an EEG expert,
the proposed algorithm successfully removed the artifact components. Surprisingly,
AWICA and EAWICA were unable to remove the artifacts properly, having even
modified the EEG components in some of the signals (#1 and #2).

1.1.4. Discussion

Here, an efficient SWT-based algorithm for ESLT removal in single-to-few EEG
channels was introduced, which, compared to the conventional WT-based methods,
does not require full tree decomposition of contaminated EEG signals for denoising.
Instead, the proposed algorithm automatically terminates SWT decomposition when
it reaches ESLT components. Automatic selection of the optimal decomposition
level avoids unnecessary additional decomposition steps and speeds up the filtering
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Fig. 1.7. Beeswarm plot of CC (a), NRMSE (b) and PSNR (c) between the ESLT-free
and the filtered EEG signals for the SWT-kurtosis, AWICA, and EAWICA algorithms.
n and o stand for mean and SD.

execution. In contrast to previously reported algorithms for ESLT removal, the
proposed algorithm (i) mitigates the need for a large amount of EEG channels as it can
adequately eliminate ESLT artifacts in a short segment of single-to-few EEG channels;
(ii) is less dependent on human intervention since only one parameter is required to
be set and such a parameter seems to be interchangeable between datasets; and (iii)
dispenses initial calibration. With such characteristics, the proposed algorithm can be
suitable for removing ESLT artifacts in portable single frontal channel EEG headbands.

The automatic SWT-based algorithm’s success entails proper threshold selection
criteria to stop the decomposition process and denoise the extracted components.
Typically, the SWT decomposition level selection depends on the sampling frequencys;
consequently, EEG signals sampled at different rates require different decomposition
levels for the denoising. The proposed algorithm mitigates this problem by combining
SWT-based decomposition with kurtosis analysis to automate the selection of the
final wavelet decomposition level, independently of the sampling frequency. This
novelty was demonstrated by purposefully choosing databases with distinct sampling
frequencies (128 Hz, 200 Hz and 256 Hz) to evaluate the proposed algorithm’s
performance. The AWICA and EAWICA algorithms, while automatic, are more
computationally complex as they apply a two-step decision procedure based on the
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Fig. 1.8. Examples of real contaminated EEG signals (a) and the corresponding
filtered EEG signals by the proposed SWT-kurtosis (b), AWICA (c¢), and EAWICA
(d) algorithms.

kurtosis and Renyi’s entropy to detect and eliminate artifacts, and rely on two signal
decomposition-based methods (ICA and DWT). Moreover, the selection of artifactual
components is only performed after the complete signal decomposition with DWT.
Conversely, the proposed algorithm terminates SWT decomposition once the optimal
level has been reached, thus decreasing the computational time.

In the semi-simulated EEG signals, the proposed algorithm demonstrated
superior performance in comparison to these of AWICA AWICA and EAWICA with:
(i) a higher mean of CC values, indicating more desirable phase preservation; (ii) a
higher mean of PSNR values, suggesting better quality reconstructed signals; and (iii)
a lower mean of NRMSE values, indicating more robust filtering. The same filtering
behavior has been confirmed by the visual comparison of the filtered EEG signals
contaminated with real ESLT artifacts. While the proposed algorithm effectively
eliminated the artifacts and preserved the EEG components, the AWICA and EAWICA
algorithms failed to remove artifact components completely, while even eliminating
some desirable parts of the EEG signals. A plausible explanation for this could be that
the AWICA and EAWICA algorithms erroneously set the artifacts markers, thereby
eliminating desirable EEG parts instead of the artifacts. The selected artifact markers
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are, however, according to the authors’ guidelines. Nevertheless, the erroneous
artifacts markers selection further emphasizes the disadvantage of the AWICA and
EAWICA algorithms, while there is the need to set such markers accurately for each
used database. The lack of interchangeability of set artifacts markers is a significant
drawback in ambulatory EEG signals, as it is unrealistic to predict the most suitable
markers for ESLT artifacts removal.

1.2. Eye Blinks

Among the physiological artifacts in EEG, eye blinks are prominent in frontal
channels due to their amplitude, frequent occurrence (12 to 15 per minute), proximity
to the electrodes, and the frequency range [50]. Eye blinks are involuntary and, thus,
unavoidable in EEG recordings [51]. One possible solution is to record EEG with
eyes-closed, however, such a recording can yield the undesirable alternation of EEG
rhythms [52] and evidently is not applicable in experiments with visual stimulation.
Specially for single frontal channel EEG devices, the filtering of eye blinks is crucial
before further processing to avoid an erroneous brain activity analysis [51]. While
numerous algorithms are available for multi-channel and offline eye blink filtering [38,
53,54], unsupervised algorithms capable of removing eye blinks in a short segment of
a single-channel EEG for real and semi-real time applications such as brain-computer
interfacing are still lacking.

Subtraction, regression, and adaptive filters are amongst the most straightforward
methods for eye blink removal in the single EEG channel. However, such filters require
the artifact reference channel, thus increasing the hardware complexity, which is
disadvantageous for portable single channel EEG headbands. Additionally, algorithms
based on such filters presume that no bidirectional contamination exists between the
recorded artifact reference and the desired EEG, which is not always correct [50].

Signal decomposition algorithms such as wavelet [40, 55, 56], empirical mode
decomposition (EMD) [57], and variational mode decomposition (VMD) [58] require
no artifact reference channel. Indeed, an automatic algorithm based on VMD and
linear regression (AVMD) [59] was proposed for the removal of eye blinks in short
segments of single-channel EEG, outperforming EMD, ensemble EMD, ICA, and
wavelet-enhanced ICA algorithms. A common problem of signal decomposition-based
algorithms is the inability to limit filtering to the actual artifactual eye blink interval,
typically 200-400 ms long [60]. Instead, such algorithms filter the whole segment of
the contaminated EEG signal, e.g., 3s, which can eliminate some of the non-artifactual
components of EEG signals. Thus, algorithms capable of restricting filtering to the
artifactual intervals without compromising the desired EEG components are needed.

Restricting filtering to the artifactual eye blink interval could be accomplished
by using artifact detection strategies, such as amplitude thresholding, derivatives, or
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template matching. Amplitude threshold-based algorithms show limitations when
other high amplitude artifacts appear [61]. Moreover, eye blinks with an amplitude
lower than the threshold cannot be detected [62]. Derivative-based algorithms detect
sudden changes by presuming that a triangular-shape morphology represents an eye
blink event [63], which is a controversial presumption [64]. Lastly, template matching
algorithms employ a threshold to assess the similarity between EEG segments and a
provided template. Thus, the success of template matching algorithms depends on
correctly defining both the template and the threshold value. The iterative template
matching and suppression algorithm [64] was proposed to detect and eliminate
eye blinks from a single-channel EEG with an automatic threshold and template
estimation. Despite the excellent performance, this algorithm is only applicable for
offline processing since it requires a sufficient number of eye blink events for an
accurate filtering. In specific portable-EEG applications, real-time removal of eye
blinks is crucial, meaning that algorithms must filter the artifactual intervals in short
segments.

Here, an efficient algorithm, VME-DWT, is presented for the unsupervised
detection and filtering of eye blinks in a short segment (i.e., 3s) of a single-channel
EEG without the mentioned limitations. The artifactual eye blink intervals are detected
by using variational mode extraction (VME) [65], followed by an automatic DWT
to filter the contaminated intervals. VME extracts an approximation of the eye
blink signal from the contaminated EEG, facilitating the search for the eye blink
peak to form the artifactual interval. DWT then only filters the selected interval,
preserving the non-artifactual intervals of EEG signals, without requiring any prior
calibration or artifact reference. The performance of VME-DWT is investigated
on both semi-simulated and real contaminated EEG signals and then compared to
the AVMD [59] and DWT [55] algorithms, which, as mentioned above, have been
developed for the eye blink filtering in short segments of the single-channel EEG.

1.2.1. The proposed VME-DWT algorithm

The VME firstly extracts an approximation of the eye blink signal to localize
the highest eye blink peaks, and detects the artifactual intervals containing eye blinks.
Then the identified intervals are filtered by using DWT, maximizing the preservation of
eye blink-free EEG. The block diagram of the proposed algorithm is shown in Fig. 1.9.

Eye blink detection using VME

The VME algorithm requires two parameters to be set: the compactness
coefficient « and the approximate value of the center frequency w, of the desired
mode. Although the authors in [65] recommend high « values to ensure that the
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Fig. 1.9. The block diagram of the proposed algorithm.

detected center frequency is related to the desired mode, smaller ¢ values are better
suited to extract all eye blink-related components due to the eye blink frequency range
(0.5-7.5 Hz) and its spectral overlapping in EEG signals. To find the best « fit, we
initialize « at 7000, decreasing with a 1000-step until 2000. The approximate center
frequency is selected based on the eye blink frequency to a value of 3 Hz.

After extracting the desired mode, m(n), the eye blinks peaks are located by
computing the local maxima of m(n) that have values greater than the universal
threshold defined in (Eq. 1.3) [40,45,54]. After localizing every eye blink’s highest
peak in m(n), they will be projected to contaminated EEG to set intervals for the
time-selective filtering of eye blink components. Since the eye blink duration varies
from 200 to 400 ms [45,60,66,67], a 500 ms interval (125 ms pre- and 375 ms post the
highest amplitude peak) is chosen to ensure that all eye blink components are included
even if the algorithm does not precisely localize the highest eye blink peak.

Double eye blink

In some cases, two eye blink events might overlap. While the proposed algorithm
can detect them, the filtering is performed twice, thus, increasing computational
complexity and yielding extra data loss. To overcome this issue, a simple criterion
that measures the distance between the identified eye blink peaks is employed. If the
distance between two eye blink peaks is smaller than 500 ms, the artifactual window
is updated to 125 ms pre-first highest eye blink peak and 375 ms post-second highest
eye blink peak (Fig. 1.10).
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Fig. 1.10. Examples of a contaminated EEG with a double eye blink (a), extracted
VME mode with detected eye blink peaks (b), formed the artifactual window on VME
mode (c), and EEG with projected artifactual interval (d).

Eye blink filtering by using DWT

DWT decomposes an input signal x(n) into low and high frequency components
known as approximation a(n) and detail components d(n), respectively. The original
input signal can be reconstructed entirely by x(n) = Zlel d,(n) + a, (n), where L is the
number of the decomposition level.

DWT requires two parameters to be set: the mother wavelet and the
decomposition level. Analogously to previous studies [34, 68], Daubechies 4 is
selected as the mother wavelet as its morphology resembles that of eye blinks. The
selection of the decomposition level is a more painstaking task as EEG signals from
different databases might require a distinctive number of decomposition levels for
denoising [34,37,40,42]. The most straightforward approach is to employ the full tree
decomposition, however, such an approach may increase unnecessary computational
requirements. To this end, we use a skewness-based index to control and find the
best decomposition level. Since the eye blink amplitude is significantly higher than
the EEG signal, its emergence can lead to an asymmetric distribution of the EEG
signal [57,69,70]. Thus, large absolute skewness values in DWT components can
indicate the eye blink existence (Fig. 1.11).

Compared to the EEG signal, the eye blink is a low-frequency phenomenon.
Thus, its components are expected to emerge in the approximations a(n) of the
decomposed signal. The absolute difference of skewness values at two consecutive
approximation components is, therefore, used as the decisive factor whether to
terminate or continue the decomposition process:

& = [1S;1 = 18,41, (1.8)

36



(@) (b)

1 1
[ [}
o =]
2 2
30 30
£ €
< <
o 15 N
L 0 15 3
Time (s) Time (s)
0.4
$=0.0085
2
20.2
[
fa)
0!
04 -02 0 0.2 0.4 08 04 0 04 08 12

Amplitude Amplitude

Fig. 1.11. Examples of eye blink-free (a) and contaminated (b) EEG signals with the
corresponding distributions. S indicates the skewness value.

where S is the skewness and j is the level of decomposition. If § > T, it can be assumed
that DWT has reached the blink components. The threshold value, 7, is tuned based
on the lowest error between the eye blink-free and filtered EEG signals. The main steps
of the proposed VME-DWT are summarized in Algorithm 2.

Algorithms under comparison

To compare the performance of the proposed algorithm, AVMD and DWT
algorithms, proposed for eye blink filtering in a short segment of single-channel EEG,
were used.

AVMD

The key steps of AVMD are to (i) decompose the contaminated EEG signal into
12 modes by VMD, (ii) find the artifactual modes based on amplitude and frequency
thresholds, (iii) employ the summation of the artifactual modes as the input of linear
regression to estimate the eye blink in the contaminated EEG signals, and (iv) subtract
the estimated eye blink from the contaminated EEG signal. The required parameters
of AVMD have been set as described in [59].

DWT

The basis of the DWT denoising algorithm is to (i) decompose the input signal
into [ levels of coefficients by using a basis function, (ii) set the coefficients of each
level with a higher value than the threshold to zero, and (iii) reconstruct the denoised
signal with inverse DWT. In [55], four basis functions, haar, coif3, sym3, and bior4.4
with universal and statistical thresholding have been investigated. According to the
authors, bior4.4 basis function with the statistical thresholding can be the finest choice
for eye blink removal.

37



Algorithm 2: VME-DWT for eye blink removal
Input: Noisy EEG z(n), a, wy, Fs, T
Output: Filtered EEG X(n)

Initialisation 6,8 < 0,j « 2

{ Detect Artifactual Interval}

1: m(n) «VME(z(n), a, w )

2: 6 « Eq. 2.6

3: fori =2to3« Fs—1do

4:  ifm@)>m@Gi-1) &&m(i) >m(i+1) && m(i) > 0 then
5: onset — i —0.125 x Fs

6: offset « i +0.375x Fs

7: zy(n) <z(onset:offset)

8: endif

9: end for{ Filter Artifactual Interval}
10: while true do

11:  aj_j(n) «DWT(z;(n),j - 1)

122 a;(n) «<DWT(zy(n),))

13: S eskewness(aj_l (n))

14: Sj- eskewness(aj(n))

15: & <|IS;1 = 1S4l

16: if § > T then

17: Remove g;(n)

18: X(n) « Reconstruct filtered EEG by summation of d; (n), .., dj(n)
19: break
20:  else
21: jej+1
22:  endif

23: end while
24: return x(n)

Evaluation criteria
Eye blink detection

To assess the accuracy of the eye blink detection, the true positive rate (TPR) and
the false positive rate per interval (FPR) are computed as follows:

TP

TPR = TP+ EN (1.9)
FP

FPR = FPrIN (1.10)

where TP (true positive), FN (false negative) and FP (false positive) stand for the
correct, missed and false number of the detected eye blinks, respectively. It should be
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noted that TN (true negative) concept does not exists in the continuous signal, therefore,
FPR is assessed over the time intervals [64].

Filtering performance

The filtering performance of algorithms is evaluated in terms of the CC and
relative root mean square error (RRMSE) computed between the eye blink-free and
the filtered EEG signals. The RRMSE measures the amplitude distortion of the filtered
EEG signals as follows:

RMS (x(n) — x(n))

RRMSE = RMS(x(n))

(1.11)

Lower RRMSE values indicate a better filtering quality.

1.2.2. Data

Semi-simulated and real eye blink-contaminated EEG signals have been used to
develop and test the algorithm.

Semi-simulated data

To generate semi-simulated data, synthetic eye blink signals have been produced
by repeating an eye blink template from [64] with different amplitudes at random
time intervals. The generated eye blinks have been added to 1368 three-second long
artifact-free EEG segments collected from [46]. The EEG signals were recorded
according to the International System 10-20 with a sampling frequency of 200 Hz.
EEG signals were carefully captured to minimize the appearance of the external and
physiological artifacts. A white noise is also added to our semi-simulated data to
resemble real world EEG data better:

z(n) = x(n) + r(n) + v(n), (1.12)

where z(n) is the noisy EEG, x(n) is the artifact-free EEG, r(n) is the eye blink artifact
and v(n) is the white noise that might emerge in EEG signals from other sources such
as the environment or muscle contractions. Accordingly, we generated contaminated
EEG signals with different SNR values.

Real data

The performance of all algorithms is tested on real data comprised of 3000
three-second long EEG segments from frontal channels, drawn from four brain
computer interface public databases [71-74]. Table 1.3 displays the information about
each database.
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Table 1.3. A brief description of the employed databases for real EEG data analysis.

Database [71] [72] [73] [74]
Sampling rate (Hz) 512 200 256 250
Electrode montage 10-10 10-20 10-10 10-20

No. of used subjects 4 6 7 15
No. used signals 444 1036 724 796

The motivation behind using different databases is to investigate the adaptiveness
of the proposed algorithm’s parameters for EEG signals recorded in different
conditions. These databases were purposely selected due to their realistic signal
acquisition conditions as no artifact control or rejection was employed during
recording. For more details about the data, see [71-74].

1.2.3. Results

Parameter tuning of the VME-DWT parameters

The parameter tuning of the proposed algorithm’s required parameters is
conducted by using 456 segments of the semi-simulated data. The a value, which plays
the most important role for eye blink detection, is adjusted based on the highest mean
of TPR and the lowest mean of FPR in the contaminated EEG signals with different
SNR values. Fig. 1.12 confirms that the finest ¢ value is 3000.
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Fig. 1.12. Examples of contaminated EEG signals with different SNRs (a), the
corresponding desired mode extracted by VME (b), the true positive rate (c), and the
false positive rate per interval (d).

As for T, which controls the DWT decomposition level, it is tuned based on the
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highest and lowest mean of CC and RRMSE, respectively, between the filtered and eye
blink-free EEG signals. T values ranging from 0.05 to 0.25 with a step of 0.05 are
employed. Fig. 1.13 shows that the finest T’ value is 0.1.
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Fig. 1.13. The mean+standard deviation of CC (a) and RRMSE (b) between the eye
blink-free and filtered EEG signals.

Note that these 456 signals were only used for the parameter tuning of the
VME-DWT algorithm and are not included for the performance evaluation. The rest
of the semi-simulated data and four real EEG databases are filtered with ¢ = 3000 and
T = 0.1 values to investigate their adaptivness for different EEG databases.

Filtering results for semi-simulated data

Table 1.4 discloses the TPR and FPR values for eye blink detection in 912
three-second long segments of contaminated EEG signals with SNR ranging from -8 to
+3 dB. The VME-DWT detected, on average, more than 95% of the eye blinks with an
a value of 3000 for all SNRs. Fig. 1.14 shows examples of the contaminated and their

Table 1.4. Percentage of TPR and FPR of VME-DWT for eye blink detection.

SNR(dB) TPR(%) FPR
SNR>0 99.54 0.0004
-6<SNR<0 96.45 0.0032
SNR<-6 91.34 0.0136
Mean+SD 95.77+4.14 0.0057+0.007

corresponding eye blink-free and filtered EEG signals with different SNRs. In terms
of the visual inspection, the VME-DWT eliminated eye blinks components better than
AVMD and DWT.

The boxplots of the CC and RRMSE values between the eye blink-free and
filtered EEG signals are shown in Fig. 1.15. Compared to AVMD and DWT, the
VME-DWT displays a lower mean value of RRMSE (0.42 vs. 0.59, 0.87) and a higher
CC mean value (0.92 vs. 0.83, 0.58), thus, indicating that the proposed VME-DWT
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Fig. 1.14. Examples of contaminated (a), and filtered EEG signals by the VME-DWT
(b), DWT (c), and AVMD (d) algorithms.

can better preserve the original eye blink-free EEG signals.
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Fig. 1.15. Boxplots of CC (a) and RRMSE (b) between the eye blink-free and filtered
EEG signals for all algorithms.

Filtering results for real data
Table 1.5 displays the TPR(%) and FPR for eye blink detection in all four real
EEG databases. As it is shown, the proposed algorithm could detect the majority of
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the eye blink artifacts in EEG signals captured with distinctive recording conditions.
It should be noted that, due to unavailability of the artifact-free EEG, the computation
of TPR and FPR for different SNRs is not possible.

Table 1.5. Percentage of TPR and FPR of VME-DWT for eye blink detection in four
real EEG databases.

Database [71] [72] [73] [74]
TPR(%) 9524  94.12 9332  98.52
FPR 0.0042 0.0071 0.0098 0.0083

Fig. 1.16 depicts examples of real contaminated EEG signals from all four
databases with their corresponding filtered EEG signals. As it can be observed, the
proposed algorithm can better filter the intervals with eye blink artifacts.
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Fig. 1.16. Columns with examples of real contaminated EEG signal from [71] (a), [72]
(b), [73] (¢), [74] (d), and below the corresponding filtered EEG signals.

Because the real artifact-free EEG signals are unknown, the temporal criteria
were only computed between the eye blink-free intervals of real and filtered EEG
signals [39]. Table 1.6 suggests the superiority of VME-DWT to AVMD and DWT
for the preservation of non-artifactual intervals.

43



Table 1.6. CC and RRMSE comparison (mean+standard deviation) between the eye
blink-free intervals of contaminated and filtered EEG signals for real data.

Database VME-DWT AVMD DWT

CC RRMSE CC RRMSE CC RRMSE
[71] 0.94+0.03 0.16+0.04 0.89+0.08 0.18+0.10 0.68+0.11 0.84+0.18
[72] 0.97+0.02 0.14+0.02 0.93+0.04 0.21+0.12 0.73+0.03 0.96+0.03
[73] 0.93+0.04 0.15+0.05 0.88+0.07 0.19+0.06 0.64+0.14 0.76+0.23
[74] 0.98+0.01 0.09+0.04 0.84+0.06 0.19+0.09 0.62+0.14 0.94+0.34

1.2.4. Discussion

Here, the VME-DWT algorithm for the eye blink suppression in EEG signals
was proposed. The obtained results suggest that the proposed VME-DWT: (a) can
adequately detect and eliminate eye blinks in a short interval of a single EEG channel;
(b) is automatic as no human involvement is required; (c) is less invasive compared to
other decomposition-based algorithms since only contaminated intervals are filtered,
and non-artifactual intervals remained unaltered; and (d) is needless to the artifact
reference and initial calibration. The proposed VME-DWT also tackles the limitations
of the classical artifact detection strategies such as the amplitude thresholding and
template matching as it is robust to the other high amplitude artifacts and does not
require any predefined template.

While the performance of VME is not highly sensitive to the value of the center
frequency [65], regulation of the compactness coefficient, a, plays the key role for
the accurate detection of eye blinks in EEG signals. Albeit a higher value of « can
guarantee the extraction of the narrow-banded mode, in this application, however,
smaller « values should be employed as the frequency range of the eye blink violates
the VME presumption by overlapping in the delta, theta and alpha bands of EEG
signals [68]. This is also the plausible explanation that the extracted desired mode by
VME should not be directly subtracted from the contaminated EEG signals as it would
either remove some low frequency components of non-artifactual EEG or preserve
some high frequency components of eye blinks. Thus, the extracted mode is used for
the more precise localization of the artifactual eye blink intervals. Our results suggest
that «=3000 is the finest value for robust eye blink detection with the highest TPR and
the lowest FPR (Fig. 1.12 (c), (d)).

The optimal DWT decomposition level for the eye blink filtering is
achieved by a skewness-based index between two approximation components.
Such an approach automatically terminates the decomposition procedure, evades
unnecessary decomposition, and accelerates the filtering procedure. Furthermore,
the skewness-based index, unlike other wavelet-based methods [34, 40], avoids the
full tree decomposition of DWT or the manual selection of the decomposition level.
The interchangeability and effectiveness of the proposed index have been proven by
employing contaminated EEG signals with different recording conditions.
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The performance is compared to the AVMD and DWT algorithms, proposed
for the eye blink elimination in short intervals of a single EEG channel. In
912 semi-simulated EEG signals contaminated by eye blinks, the VME-DWT
outperformed the AVMD and DWT, showing: (i) a higher mean of CC values,
suggesting an enhanced EEG components’ preservation, and (ii) a lower mean of
RRMSE values, showing higher filtering robustness. As for real data, while the
proposed VME-DWT showed a satisfactory performance, the AVMD and DWT
algorithm failed to attenuate the eye blinks adequately (Fig. 1.16). Plausible
explanations for such results are twofold. Firstly, the real EEG signals used in this
research could require adjustment of the parameters set for the AVMD and DWT
algorithms. However, having to adjust parameters for every new database would defeat
the purpose of automatization, which is, evidently, unfavorable for the real-time EEG
applications. Secondly, it is plausible that the number of the extracted modes or levels
is insufficient, leading to the artifact markers failing to detect eye blinks.

While the proposed algorithm offers satisfactory performance, its limitations and
potential solutions should be considered. Firstly, the presence of other low-frequency
artifacts such as the electrode drift may hinder the accurate eye blink detection by
the VME. Thus, high-pass filtering with a cut-off frequency of 0.5 Hz should be
used before running the proposed algorithm. Secondly, the proposed algorithm only
detects and eliminates artifacts associated with blinks, but no other artifacts such as
eye saccades and muscle contractions. Nevertheless, it can be employed in conjunction
with other filtering algorithms. Thirdly, this study presumes that contaminated EEG
signals have only positive eye blink peaks. In bipolar EEG recordings (e.g., FT10-T8
channel), negative eye blinks might appear, and the proposed algorithm cannot detect
them, unlike the AVMD and DWT. One potential solution could be to use the local
minima of the extracted mode with the negative value of the threshold 6. Fourthly,
while 6 showed adequate performance for the detection of the highest eye blink peak
from the VME mode, other strategies such as the algebraic approach [56] or the
statistical threshold [55] may also improve the detection performance. Fifthly, the
proposed approach for the double eye blink event has been developed experimentally
and may require further investigation for more accurate performance. Nevertheless,
these suggestions to mitigate the mentioned problems are just a hypothesis and require
further investigation.

1.3. Conclusions of the Chapter

1. Skewness and kurtosis serve as effective indicators for detecting ELST and
eye blink artifacts in short segments of EEG signals decomposed by using SWT and
DWT methods.

2. The proposed algorithms demonstrate superior performance compared to
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the current state-of-the-art methods for eliminating ESLT and eye blink artifacts,
evidenced by a comprehensive evaluation on different EEG databases with diverse
recording conditions.

3. The simplicity and adaptability of the proposed algorithms make them highly
advantageous not only for addressing artifact removal in portable EEG headbands, but
also in other applications where semi-real-time analysis is important.
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2. SLEEP ASSESSMENT

Sleep, an essential state of altered consciousness, provides a profound framework for
discerning and categorizing different levels of consciousness. It plays a critical role
in the physical and mental recovery of individuals. However, it is estimated that 25%
of the population in the European Union suffers from some form of sleep disorder.
These disorders not only adversely affect the physical and mental health but also have
significant economic impacts, including costly treatments, reduced efficiency, and
increased risk of road accidents [5]. Therefore, there is a high demand for monitoring
the quality and duration of sleep. The use of cost-effective portable EEG devices
enables the reliable monitoring and evaluation of sleep patterns outside clinical and
hospital settings. This capability is crucial for providing personalized and affordable
sleep monitoring solutions.

Polysomnography (PSG) is considered the gold standard method for sleep
monitoring. It simultaneously records several physiological signals such as, but
not limited to, EEG, electrocardiogram (ECG), electrooculogram (EOG), and
electromyogram (EMG). Despite its excellent appropriateness, it is an expensive
procedure that requires to be conducted in clinical environments under the supervision
of a sleep technician. Furthermore, subjects need to wear a large number of sensors
that can affect their comfort and sleep behaviors [75]. To overcome the aforementioned
issues, many researchers have developed algorithms for the automatic analysis of sleep
using low-power wearable technologies that collect a single physiological signal from
the human body, e.g., EEG [76], EOG [77], acceleration [78], respiration, [79], and
photoplethysmography [80], also providing new possibilities for the home-based sleep
monitoring [81]. Amongst the mentioned signals, the EEG has the richest information
for the sleep analysis as the alternation in brain waves follows the awake and sleep
stages [82—84]. Thus, a wide range of studies have employed a single EEG channel for
the classification of awake and sleep stages.

2.1. Discrimination of Wakefulness from Sleep Stage I

Nonetheless, one of the major challenges reported in the EEG-based sleep
monitoring studies is a low sensitivity to sleep Stage I when discriminating it from
wakefulness [82,85-90], which is due to the similar characteristics of the EEG signal
in these two consecutive phases. The relevance of such discrimination lies in the
estimation of the sleep onset latency, defined as the time interval needed to accomplish
the transition from wakefulness to the first level of sleep, which is widely employed for
assessing the quality of sleep [91]. One possible remedy is to use an auxiliary signal
such as ECG [92], EMG and EOG [93], however, it increases the wearable complexity.
On the other hand, selecting the location of the EEG channel is also of great importance
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for the applicability, i.e., employing a frontal EEG channel, compared to an occipital
one, is more convenient for the users.

Because of the complex and dynamic nature of EEG signals, and the resemblance
of EEG characteristics between being awake and some sleep stages, extracting the
appropriate EEG measures plays a vital role in the accurate monitoring of sleep. In
general, EEG feature extraction strategies for sleep analysis are categorized into four
classes: temporal [83], spectral [94], time-frequency [95], and nonlinear [96] analyses.
Although the temporal analysis has the advantage of simplicity, intuition, and low
computation, it is yet inefficient for interpreting the complex nonlinear variation of
EEG in sleep. Alternatively, the feature extraction can be performed on EEG sub-bands
with different frequency ranges [82,85,86]. Deep learning algorithms have also shown
promising results for the classification of awake and sleep stages [87-90, 97-100],
however, compared to the conventional methods, they require more computational and
data resources [83].

Although there is still a controversy about the nonlinear nature of EEG, several
studies showed the superiority of nonlinear measures over the linear ones in different
EEG applications [101-103], in particular for the consciousness studies [104, 105].
Motivated by the fact that the differentiation between wakefulness and sleep Stage
I might be related to the level of consciousness [106], and the efficiency of the
feature extraction from EEG sub-bands for the sleep scoring [82,85,86], we propose a
nonlinear feature set extracted from sub-bands of a single frontal EEG channel for the
classification of wakefulness and sleep Stage I.

The efficiency of nonlinear measures usually relies on the manual setting of
several parameters, thus, increasing human intervention. To this aim, we used EEG
signals from four different sleep databases, where one of them is used for tuning the
nonlinear features and the other three are used for investigating the effectiveness of
the adjusted measures. The performance of the proposed feature set is also compared
against the relative band power (RBP) analysis, considered as one of the most common
techniques for the EEG-based sleep analysis [81-84]. The basis of the proposed
algorithm is to (i) decompose the EEG signal into its sub-bands by using the DWT, (ii)
compute two fractal dimensions and two entropy measures from each EEG sub-band,
and (iii) discriminate wakefulness from sleep Stage I based on a support vector machine
(SVM).

2.1.1. The proposed algorithm

The block diagram of the proposed algorithm is shown in Fig. 2.1. In the
subsections below, the proposed algorithm is explained in detail.
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Fig. 2.1. Block diagram of the proposed algorithm for classification of awake and sleep
Stage I cases using a single EEG channel.

Pre-processing

The recorded EEG signals are contaminated by artifacts that either are persisting
or abruptly vary the amplitude in the EEG signal. As these artifacts contain both low
and high frequency components, linear filters may not clean the signal satisfactorily.
For this reason, we filtered the EEG signals by the kurtosis-based hard universal
thresholding, (1), of the stationary wavelet transform algorithm presented in [18].

DWT for EEG sub-bands decomposition

The DWT decomposes the input EEG signal x(n) into several sets of high
and low frequency components, i.e., detail d(n) and approximation a(n) components,
characterizing the time evolution of the EEG signal in the corresponding frequency
band. Based on multiresolution analysis, at the first level of DWT, the input EEG
signal is decomposed into an approximation a, (n) and a detail 4, (n). At the second
level of DWT, a, (n) is decomposed into another approximation a, (rn) and detail d, (n)
components and so on, where the given EEG signal can be reconstructed by:

1
x(n) =Y d;(n) +a,(n), 2.1)
j=1

where [ is the decomposition level. The frequency range of each approximation and
detail component is computed as a function of the sampling frequency Fs and the
decomposition level /, as follows:

a,=[0 Fs]’ 1=[FS Fs]’

’ 21+1 2l+1’7

(2.2)

Another important issue for employing the DWT is to choose the basis function,
generally selected based on the similarity of the desired signal and the basis function.
Here, we use Daubechies 4 as proven to be suitable for the EEG sub-bands extraction
[107]. As illustrated in Fig. 2.2, four levels of DWT are employed to extract the EEG
sub-bands. It should be noted that the detail components of the first, second, third and
fourth level correspond to gamma (y), beta (8), alpha (), and theta (), respectively,
and the fourth level of the approximation component relates to the delta (§) band.
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Fig. 2.2. An example of decomposed EEG signal into its sub-bands by DW'T.

Feature extraction

After decomposing the EEG into sub-bands, four nonlinear measures called
Higuchi’s fractal dimension (HFD), Katz’s fractal dimension (KFD), bubble entropy
(BubbEn), and dispersion entropy (DispEn) are extracted to form the feature vector.
Thus, the proposed feature vector contains 20 measures.

Fractal dimension (FD) is acknowledged as one of most effective measures
for analyzing biomedical signals, extensively employed for EEG analysis in different
applications [108]. HFD directly computes the FD value of a given signal x(n) with
n = 1,2,...N in the time domain as follows [109]:

X = (X (m + ik) /K (2.3)

where m = 1,2, ...k is the initial time and k is the interval time. The length of each X,
is expressed as:

L, (k) = == , (2.4)

Finally, the fractal dimension D is solved from
(L(k)) o< k7P, 2.5

where (L) is the average of L,,,.
KFD computes the fractal dimension according to the morphology, quantifying
the crudity of the signal. For a given signal x(n) with n = 1,2, ...N, KFD is defined
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as the ratio of the curve’s length, divided by the maximum Euclidean distance of any
point under consideration from the first point as follows [110]:

L
ln;

d’
1[15

KFD =

(2.6)

where L = Zfizx,- - x,_, is the length of x(n), d = Max(jx, - x;|) for j = 2,3..N is the
maximum distance from the initial point, and a = = is the average distance between
two successive points. While KFD shows more consistency for the FD computation
due to its exponential transformation of FD values and the relative insensitivity to noise,
HFD leads to a more accurate estimation of the signal’s FD, yet more sensitive to noise.

BubbEn is originated from Renyi entropy that ranks the vectors in the embedding
space of the signal [111]. Indeed, BubbEn uses bubble-sort algorithm to quantify the
number of swaps, required by the permutation process. The main advantage of BubbEn
is to be almost free of the parameters setting, i.e., the scaling factor has been removed,
and the significance of embedding dimension has been highly reduced. BubbEn is
computed based on the number of swaps needed to sort each vector and calculate the
conditional Renyi entropy of the distribution H7,, . as follows:

swaps

H:\:\l/:ls - H;\rxl/a S
BubbEn = p—lp, 2.7
log(55)

where m is the embedding dimension.

DispEn quantifies the randomness of a signal by using the symbolic dynamics
and the Shannon entropy [112]. Unlike BubbEn, it requires three parameters to be set
before the analysis; the embedding dimension, the number of classes, and the time lag.
The basis of DispEn computation is to (i) map N elements of the given signal into ¢
classes, (ii) generate embedding vectors as K = N — (m — 1) x d, where m is the number
of embedding dimensions and d is the time delay, and (iii) compute the probabilities
p, of each of the ¢ dispersion patterns. DispEn is formulated as follows:

K
DispEn = - Zp,. x log(p,), (2.8)
i=1

i=

Classification

Here, we use the SVM with the radial basis function kernel to classify the
wakefulness and sleep Stage I cases. The extracted features are firstly normalized based
on the z-score approach and then randomly split into the training-validation (70%) and
test (30%) sets. To obtain solid results, the training-validation procedure is executed
based on 10-fold cross-validation (CV), and the testing procedure is conducted only on
the unseen data set. It should be noted that the model’s hyperparamters are optimized
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during the training-validation procedure based on the Bayesian optimization method
using the MATLAB function ’OptimizeHyperparameters’. To assess the performance,
sensitivity (Sen), specificity (Spe), accuracy (Acc), and area under the curve (AUC) are
computed as follows:

TP
Sen = m x 100, (29)
TN
Spe = w X 100, (210)
TP + TN
Ace= o TN+ EN s EP ¢ 100 211
AUC = [ Sen(T)(1-Spe)'(T)dT, (2.12)

where TP and FN represent the number of correctly and wrongly classified sleep cases,
TN and FP stand for the number of correctly and wrongly classified awake cases, and
T is the binary threshold of the classifier.

Method under comparison

To compare the performance of the proposed feature set, the RBP analysis, which
has been widely used for the classification of the sleep stages [81-84], is investigated.
After filtering and DWT analysis for splitting the EEG into its sub-bands, the RBP of
8, 0, a, B, and y are computed as follows:

RBP = Db 2.13)
P EEG
where P represents the power and is computed by the root mean square of each
sub-band. In addition to the conventional RBP measures, five ratios of powers in the
different frequency bands, i.e., alpha to delta, alpha to theta, beta to delta, beta to theta,
and theta to delta have been computed, as suggested in [82]. Hence, the RBP feature
set includes ten measures.

2.1.2. Data

Here, 20s-long single frontal channel EEG signals, representing awake and sleep
Stage I states from four different databases, namely, Sleep Telemetry [113], DREAMS
[114], DCSM [115], and MESA [116] are used. Table 2.1 displays the scoring method,
the sampling rate, the employed channel, the sleep disorder status, the number of
subjects, awake (W) and sleep Stage I (S) states of each database.
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Table 2.1. Description of the used databases in summary.

Database Sleep Telemetry DREAMS DCSM MESA
Scoring R&K R&K AASM AASM
Fs (Hz) 100 200 256 256
Sleep disorders  Yes No Yes Yes
Channel Fpz-Cz Fpl-Al F3-A1 Fz-Cz
No. Subjects 22 20 20 27

No. W 4920 4576 3921 7000
No. S 4604 1788 2142 4122

Sleep Telemetry

This database [113] includes the recorded PSG data to investigate the influence of
Temazepam on 22 Caucasian men and women who were healthy or had mild difficulty
falling asleep. During two nights, 9 hours of PSG data were collected by using a
wearable miniature telemetry system in hospital settings. Then, two experts manually
scored the sleep patterns based on the Rechtschaffen and Kales manual (R&K) [117].
In this research, 9524 20s-long EEG epochs from the Fpz-Cz channel with a sampling
rate of 100 Hz are used, of which 4920 correspond to the awake stage.

DREAMS

This database [114] includes the whole night PSG recording from 20 healthy
subjects (16 females), collected in a sleep laboratory of a Belgian hospital. Each record
contains three mono-polar EEG channels, namely, Fp1, O1, and CZ or C3, referred to
A1l and sampled at 200 Hz. A laboratory sleep expert visually annotated the sleep
stages according to the R&K on the basis of 20s epochs. Here, we used 6364 20s-long
EEG epochs from the Fp1 channel, of which 4576 correspond to awake cases. It should
be noted that EEG signals were down-sampled to 100 Hz for reducing the computation.

DCSM

This database [115] includes whole-night lab-based PSG recordings collected
from subjects who visited the Danish center for sleep medicine for the diagnosis
of non-specific sleep disorders. Sleep stage scoring was performed by five experts
according to the American Academy of Sleep Medicine (AASM) criteria [118]. Each
record contains three EEG channels, sampled at 256 Hz and band-pass filtered at 0.3 Hz
to 70 Hz. In this work, we used 6063 20s-long EEG epochs of the F3-A1 channel from
20 adult subjects (10 male) with different sleep disorders, of which 3921 correspond
to wakefulness. Before the processing, the sampling rate was changed to 100 Hz.
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MESA

The multi-ethnic study of the atherosclerosis (MESA) database comprises of
at least 8 hours of overnight PSG recordings collected from subjects with different
sleep disorders by the National Sleep Research Resource (NSRR) [116]. Each record
includes three EEG channels, namely, Fz-Cz, Cz-Oz, and C4-A1, sampled at 256 Hz.
To specify the sleep stages, 30s-long EEG epochs were scored according to the AASM
criteria. Here, we used the first 20s long of 11122 EEG epochs of the Fz-Cz channel
collected from 27 subjects, of which 7000 relate to awake cases. Before the processing,
the sampling rate was reduced to 100 Hz.

2.1.3. Results

Tuning of nonlinear features

As it was already mentioned, the efficiency of a nonlinear measure depends on
the setting of its parameters. To this aim, the Sleep Telemetry database is used to tune
the values of the required parameters based on the p value of the conducted Wilcoxon
Rank-Sum Test between awake and sleep Stage I cases. Then, each tuned measure
is employed for the analysis of the other three databases. The motivation behind
using the Sleep Telemetry database for parameter tuning of the proposed feature set
is its diverse cohorts as it includes both genders with and without sleep disorders.
The most important parameter of HFD that should be tuned before the processing
is the the maximum interval, K,,,,, that HFD values are computed in. To find the
best fit, we varied it from 4 to 16, and found X,,,,=12 as the finest value. As more
stability of the BubbEn value is achieved by a higher embedding dimension [111], we
investigated values from 10 to 30 and found the embedding dimension of 22 as the
finest value. The guideline for the parameters setting of DispEn has been provided
in [112]. Accordingly, we found the embedding dimension of 2, 6 number of classes,
and the time lag of 1 as the finest values, also suggested in [107]. Fig. 2.3 shows
the boxplots of the proposed features for awake and sleep Stage I after the parameter
tuning'.

Classification results

Table 2.2 displays the training and validation results of the proposed and RBP
features sets for all databases. As observable, the proposed feature set obtained better
results than the RBP for both training and validation. Fig. 2.4 demonstrates the
classification results of the unseen testing data in terms of Acc, Sen, and Spe for all
four databases. The comparison confirms the superiority of the proposed feature set
over the RBP analysis.

'It should be noted that the outliers have been removed for the better visual comparison, and features
were normalized based on z-score method
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Fig. 2.3. Boxplots of the proposed features in different EEG bands: HFD (a), KFD
(b), BubbEn (c¢) , and DispEn (d).

Table 2.2. The average training-validation results of the SVM classifier for all
databases using both feature sets.

Training Validation
Database Acc (%) Sen (%) Spe (%) Acc (%) Sen (%) Spe (%)

9 Sleep Telemetry 98.7 99.2 96.2 87.6 85.2 90.8
2 DREAMS 98.9 97.9 99.1 95.7 90.6 97.8
g DCSM 99.4 99.1 100 96.2 94.6 98.3
A MESA 98.1 95.9 99.2 89.2 85.8 90.8
Sleep Telemetry 91.5 89.1 92.9 75.6 73.8 78.9

g DREAMS 94 .4 89.9 97.8 89.8 82.7 95.8
% DCSM 95.4 89.2 98.9 89.7 95.8 80.3
MESA 93.1 84.6 97.3 89.6 82.1 94.6

When applied to the Sleep Telemetry database (Fig. 2.4a), the proposed feature
set outperformed the RBP by showing 10.71%, 10.93%, and 10.76% higher mean
values for Sen, Spe, and Acc, respectively. Regarding the DREAMS database
(Fig. 2.4b), while both feature sets showed similar Spe values, the proposed feature
set surpassed the RBP in terms of Sen (87% vs. 71%) and Acc (92% vs. 88%). As
for the DCSM database (Fig. 2.4c), the proposed feature set gained 16.79%, 2.53%,
and 7.86% higher mean values for Sen, Spe, and Acc, respectively. Regarding the
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Fig. 2.4. The comparison between Acc, Sen, and Spe values (mean+standard
deviation) for both feature sets using Sleep Telemetry (a), DREAMS (b), DCSM (c),
and MESA (d) databases.

MESA database (Fig. 2.4d), while both feature sets showed comparable Spe and Acc
values, the proposed feature set showed 5.88% higher mean of Sen. According to the
conducted independent two-sample t-test, there is a statistically significant difference
between the Sen values obtained by the proposed and the RBP feature sets (p<0.05).

Fig. 2.5 shows the receiver operating characteristic (ROC) curves and the
corresponding area under the curve (AUC) values of the unseen testing data for all
four databases obtained by both feature sets. As it is displayed, higher AUC values
were achieved by the proposed nonlinear feature set for Sleep Telemetry (0.91 vs.
0.79), DREAMS (0.97 vs. 0.89), DCSM (0.98 vs. 0.92), and MESA (0.92 vs. 0.89)
databases.

2.1.4. Discussion

The aim of this study was to discriminate the wakefulness from sleep Stage
I by using a single frontal EEG channel. Thus, we proposed a nonlinear feature
set extracted from the EEG sub-bands, and verified its effectiveness by using four
different databases. The importance of this research lies in the analysis of the sleep
onset latency, reflecting the overall sleepiness and the sleep quality, which can also be
employed for the prognosis of coma recovery. Another important application of such
discrimination is the detection of drowsiness, which is responsible for almost 25% of
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Fig. 2.5. The ROC curves and the corresponding AUC values using both feature sets
for Sleep Telemetry (a), DREAMS (b), DCSM (c) , and MESA (d) databases.

the road accidents in the European Union [119].

To this purpose, HFD, KFD, BubbEn, and DispEn extracted from EEG sub-bands
were investigated. The FD measures the degree of complexity and self-similarity
by assessing how rapidly the signal increases or decreases with changing the scale.
As EEG is expected to show more complexity through wakefulness, FD values are
assumed to show higher values. On the other hand, entropy quantifies the uncertainty of
the signal, thus, it is presumed to observe more uncertainty during wakefulness [106].

Compared to state-of-the-art algorithms, the advantage of our algorithm can be
discussed in twofold. Firstly, while the majority of studies only considered one or two
databases for reporting the results [76, 83, 84, 86, 88-90, 95,97-99], we evaluated the
performance of the proposed algorithm by using four databases. Hence, the reported
results here are more solid as different databases with distinguishing characteristics
were employed. Secondly, compared to deep learning methods [49, 98, 99], our
algorithm requires less computational power and resources. In addition, deep learning
based-methods require a lot of background knowledge and experience to be designed
and implemented.

The main burden for employing a nonlinear measure is the adjustment of its
parameters, playing an important role for the efficiency. On the other hand, the
interchangeability of a tuned feature for other databases is also another concern that
must be noted. To this purpose, we found the appropriate parameter values of each
feature by using Sleep Telemetry database and tested their effectiveness on three
different databases. The obtained results attested the effectiveness of the proposed
feature set and their tuned parameters.

As shown in the results, the obtained Sen values by the proposed feature set
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outperformed the RBP for all four databases. Indeed, EEG signals show strong
nonlinearity [101], thus, it is expected to achieve a better performance when using
nonlinear features. While the obtained results of the proposed feature set show no
noticeable difference between the Sen and Spe values for each database, the obtained
Sen and Spe values by the RBP of DREAMS and DSCM databases confirm a high
rate of misclassified sleep Stage I cases. The plausible explanation can lie in the fact
that the theta activity and higher frequency sleep spindles can be better captured in
occipital channels [82].

Regardless the accuracy, another important criterion for selecting the channel in
portable EEG devices should be the comfort of the subjects. For example, the use of
EEG channels from the occipital region of the scalp can lead to inconvenience as it
is usually covered by hair and is found intrusive for falling asleep. Alternatively, the
frontal region of the scalp, in particular a prefrontal channel, is more suitable for the
long-term recordings as it is a hairless region, i.e., it is less subjected to noise, thus,
allowing the subject to have more comfortable sleep positions.

Although the proposed feature set shows promising results, there are a few
concerns that must be investigated further. Firstly, subject-independent analysis has
not been performed here as only a small fraction of subjects of each database were
used. Considering the inter-subject variability [120-122], the performance of feature
sets may show different results. Secondly, several studies showed that sleep Stage I
and awake cases may also be misclassified as the REM stage, which was not addressed
here. Thirdly, we have only investigated 20s-long EEG epochs. The effectiveness
of the proposed feature set should be evaluated in different time window lengths. In
particular, for the real-time monitoring of driver drowsiness [123], the performance
of the proposed feature set should be assessed by using shorter signals. Yet, for
the semi-real time detection of driver drowsiness, i.e., 20s-long epochs [20, 124],
the proposed feature set is still a good option. Fourthly, the investigation of other
sub-bands like sigma (o) also may improve the classification results. Fifthly, it might
be beneficial to combine linear and non-linear measures to form the feature set.

2.2. Conclusions of the Chapter

1. The study showcases the effectiveness and versatility of a novel nonlinear
feature set, consisting of fractal and entropy metrics, extracted from a sole frontal EEG
channel for distinguishing between wakefulness and sleep Stage .

2. The proposed feature set outperformed the RBP with the higher mean of the
Sen to sleep Stage I for the Sleep Telemetry (82.6% vs. 71.8%), DREAMS (87.6% vs.
71.8%), DCSM (91.0% vs.74.2%), and MESA (82.0% vs. 76.1%) databases.
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3. DRIVER FATIGUE DETECTION

Driver fatigue detection is a critical application in monitoring altered states of
consciousness and is central to this research’s objective of utilizing low-cost portable
EEG systems. Fatigue represents a transition from full alertness to drowsiness — a
subtle yet significant shift in consciousness that impairs the cognitive functions and
reaction times, thereby increasing the risk of accidents.

It is estimated that fatigue driving is responsible for 25% of road accidents in the
European Union [119]. In the United States alone, a study by the AAA Foundation for
Traffic Safety estimated that over 328,000 crashes annually are caused by driver fatigue,
resulting in 109,000 injuries and approximately 6,400 fatalities [125]. Therefore,
detecting fatigue and alerting the driver is crucial for reducing road accidents and
saving lives [126]. The employment of portable EEG devices offers a practical solution
for monitoring and assessing driver fatigue. Their lightweight design and ease of wear
make them ideal for real-life applications, providing a valuable tool to enhance road
safety and prevent fatigue-related incidents.

In general, two main modalities have been widely investigated for the detection
of the driver fatigue in literature; subjective and physiological approaches [127]. The
subjective strategies such as self-reported fatigue [128] and video measurement of
facial expressions [129] or head postures [130] are prone to the biased individualistic
feedback and privacy violation [131], respectively. The Ilatter is the analysis
of physiological signals such as ECG [132], photoplethysmogram [133], EOG
[134], and EEG [135], whose robustness and effectiveness have been widely
demonstrated through various algorithms and the subsequent conclusions. Amongst
the physiological signals, EEG is recognized as the most effective one as the electrical
activity of brain contains inherent information associated with the underlying processes
of fatigue [136]. Consequently, the discrimination between the fatigue and alert
driving by using EEG has been widely addressed in literature [137,138].

3.1. The Influence of Eye Blink Artifacts on Prefrontal EEG Signals for
Detection of Driver Fatigue

Following the advent of consumer EEG headbands with few channels,
researchers have designed various portable systems to monitor the driver state in the
real-world application. A comprehensive review of such systems can be found in [138].
According to this review, the alteration of EEG band powers is the most straightforward
indicator of the alert and fatigue states. Indeed, in the fatigue state, the power of alpha
and beta bands decreases while the power of the theta band increases [139, 140].

One of the greatest challenges leading to the fallacious band power analysis of
EEQG is its vulnerability to the eye blink artifact that frequently manifests itself with a
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prodigious spike [50], distorting up to the alpha band of the EEG signals [68,141,142].

On the other hand, although the existence of eye blinks jeopardizes the
punctilious decoding of EEG signals, its related analysis has been recognized as a
valuable guidance on the detection of fatigue [143—-145]. The mentioned investigations
recorded eye blinks by placing two electrodes below and above one eye, which
can yield the inconvenience for subjects on daily basis and reduces the visual field
[146]. The alternative solution, which reduces the wearable complexity, is to extract
eye blink features from frontal EEG channels, where the power of the eye blink is
strong [134, 146, 147]. Indeed, combined with the spectral analysis of low-channel
EEG signals, blink-related features derived from EEG can improve the driver fatigue
detection [148,149].

To the best of our knowledge, researchers either filtered eye blinks to improve
the quality of EEG analysis [139, 140, 150-153], or extracted blink-related measures
as additional features besides the analysis of contaminated EEG [134, 146, 148, 149].
Here, therefore, we present an algorithm for simultaneous eye blink feature extraction
and the elimination from low-channel prefrontal EEG signals to enhance the detection
of driver fatigue without requiring any artifact reference, synthetic data generation or
initial calibration. The main steps of the proposed algorithm are to (i) find the eye blink
intervals (EBIs) by VME [65] from the Fp1 channel and extract blink-related features,
(ii) project the identified EBIs to the rest of EEG channels and employ the principal
component analysis (PCA)-DWT based algorithm to remove eye blink components,
and (iii) combine the derived blink-related measures with the band power features of
the filtered EEG signals for the classification of the driver state.

To evaluate the impact of eye blinks on EEG-based driver fatigue detection, we
consider two scenarios. In the first scenario, we compare the accuracy of driver fatigue
detection by using solely band power analysis of EEG signals before and after filtering
out eye blinks. In the second scenario, we complement this analysis by incorporating
derived blink features to examine if these features enhance the accuracy of fatigue
detection.

3.1.1. The proposed algorithm for simultaneous eye blink characterization and
elimination

The block diagram of the proposed algorithm is shown in Fig. 3.1. As
observable, the proposed algorithm identifies the EBIs from EEG by VME, extracts
blink-related features, filters EBIs from EEG by the PCA-DW'T, and employs the blink
and the band power features of the filtered EEG signals to investigate the accuracy
improvement of the driver state monitoring.
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Fig. 3.1. Block diagram of the proposed algorithm for simultaneous eye blink feature

extraction and elimination to improve the quality of driver’s status monitoring. Blocks

in the green dashed line (circle A) show the steps of the proposed algorithm for eye

blink detection (red-colored) and filtering (light blue-colored) from EEG, and blocks in

dark blue dashed lines (circle B) demonstrate the procedure of driver fatigue detection
by using blink and filtered EEG band power features by SVM (purple-colored).

EBI detection

The VME requires two parameters to be set before the processing; compactness
coefficient «, which regulates the bandwidth of the desired mode, and the center
frequency w,, which is set based on the nature of the desired mode. In our previous
research [19], we showed that the best ¢ and w, values to get an appropriate estimation
of the eye blink signal for different SNR values are 3000 and 3 Hz. In order to detect
the EBIs, we firstly extract the local maxima of the desired mode to localize the highest
eye blink peaks by selecting the candidates which have greater values than the modified
universal threshold [154] as follows:

Th, = Ko2InN, 3.1)

_ median(|u(n)|)

0.6745 ’ (3.2)

where u(n), N, and K represent the extracted desired mode, the number of samples, and
an empirical value, respectively. In this experiment, K is set to 0.5.

The main challenge for identifying an EBI is its duration as it can last from 200
to 2000 ms [45, 64, 68]. To this end, zero-crossing analysis is employed in such a
way that one zero-crossing before and three zero-crossings after the eye blink highest
peak [68] are involved (Fig. 3.2a). In some particular cases, e.g., the fatigue state,
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two or more eye blink events might merge. Although the proposed algorithm may
detect them correctly, but the filtering is performed multiple times that can lead to
extra data loss. To overcome this problem, a distance criterion is used in such a way
that if the interval between two or more identified blink events is less than 500 ms,
one zero-crossing before the first highest eye blink peak and three zero-crossings after
the last highest eye blink peak are included (Fig. 3.2b). After EBIs detection from the
single-EEG channel, they will be projected to the rest of the channels.

(a) (b)
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/ 369 ms
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Fig. 3.2. Eye blink interval detection from Fp1 channel with one (a) and two (b) blink
events.

Derived blink features

As stated in literature, the alternation of eye blink behavior is a recognized tool
in the evaluation of different cognitive states [155-160]. Indeed, the fatigue state
can influence the eye blink conditioning by increasing the blink rate (BR) [155] and
decreasing the average blink amplitude (ABA) [148] (Fig. 3.3). As the proposed
algorithm firstly identifies the highest eye blink peaks, BR and ABA can be directly
computed as the number and the mean magnitude of such peaks, respectively.

Filtering of EBIs

PCA employs the second-order statistical heuristic to decompose m channel EEG
signals into M principal components (PCs), ordered from high to low variations. As
the eye blink’s amplitude is significantly higher than the EEG, it is expected to have the
higher variance value [57,70], i.e., eye blink components are expected to lie in first few
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Fig. 3.3. Examples of EEG signals in alert (a) and fatigue (b) states.

PCs. To find the artifactual PCs, we define the following modified empirical threshold,
inspired by [45]:

Th, =P+ L 3.3)

N
where P and d are the mean and the standard deviation of PCs variances, and N, is
the number of EBI samples. Each PC with a variance value greater than the threshold
is considered as an artifactual component. Traditionally, PCA denoising algorithms
reject the artifactual PCs and reconstruct the filtered signal without the rejected ones
[38,161-163], however, complete rejection of the artifactual PCs in low-channel EEG
signals leads to the elimination of the neural activity, as the number of PCs is equal to
the number of available channels. To overcome this issue, we employ the DWT to filter
the artifactual PCs. The DWT denoising-based algorithm requires two parameters to
be set; the mother wavelet and the number of decomposition levels. As for the mother
wavelet, Daubechies 4 has been shown as one of the most effective basis functions for
the eye blink filtering [34, 68]. The number of decomposition level is set according to
the sampling frequency. As the sampling rate of both databases is 256 Hz, five levels
of decomposition are selected. The DWT coeflicients of each level that exceed the
universal threshold are set to zero. Then, the filtered component is reconstructed by
inverse DW'T of the thresholded coefficients. To reconstruct the filtered EEG signals,
inverse PCA is performed on the PCs after denoising.

EEG band power features

As already stated, EEG band power analysis is still recognized as the first-line
technique to discriminate alert and fatigue states in consumer EEG systems [138].
After the eye blink removal, RBP of theta, alpha, and beta are computed. It should
be noted that delta band analysis was excluded as it is mostly related to the deeper
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level of sleep (Stages III and IV). Thus, the EEG feature set consists of six measures
from two prefrontal channels.

Classification of the alert and fatigue states

To classify alert and fatigue states, SVM, which is one of the most commonly
used classifiers for EEG studies, is employed [139,152]. The basis of SVM is to project
the data upon a hyperplane that maximizes the margin between different classes. Here,
SVM with the Gaussian kernel is employed. The SVM’s hyperparameters have been
optimized according to grid-search on 10-fold CV.

MAICA

To evaluate the performance of eye blink removal, we compare the proposed
algorithm with the moving average ICA (MAICA), which was originally designed to
eliminate artifacts from low-channel EEG signals. This comparison focuses on the
effectiveness of detecting driver fatigue after the removal of eye blinks.

Evaluation criteria
Eye blink detection

As the first step of proposed algorithm is to identify eye blinks, TPR and false
detection rate (FDR), revealing the percentage of correctly and falsely detected blinks,
are computed as follows:

Number of correctly detected blinks

TPR = Actual number of blinks

x 100, (3.4)

FDR - Number of falsely detected blinks
~ Number of all detected blinks

x 100, 3.5

Driver state classification

To investigate the performance of driver fatigue detection, Sen, Spe, Acc, and
AUC are computed as follows:

TP
Sen = m x 100, (36)
TN
Spe = m X 100, (37)
TP + TN
Acc = o TN+ NP <0 3.8)
AUC = [ Sen(T) (1-Spe)’(T) dT, (3.9)
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where TP and FN represent the number of correctly and missed detected fatigue
subjects, TN and FP stand for the number of correctly and missed detected alert
subjects, and T is the binary threshold of the classifier.

3.1.2. Data

The EEG data were collected from 12 healthy young male subjects aged between
19-24 in a highway driving simulation experiment with a low traffic density [152].
The subjects were asked to avoid using any kind of medication, alcohol, or coffee, and
have normal hours of sleep before the experiment, which started at 9 AM. To acquaint
the participants with the experimental environment, they practiced the driving task
5 minutes prior to the final experiment. After the training session, each participant
was asked to be away from the simulator for 10 minutes to engage in unconstrained
movement within the laboratory. This study was approved by the Academic Ethics
Committee of Jiangxi University of Technology. The experiment consisted of two
phases. In the first, the subjects performed the experiment for 20 minutes, and the
last 5 minutes were considered as the alert state. In the second, the subjects kept
performing the experiment for 40+100 minutes until the results of self-report fatigue
survey suggested that the subject was in a driving fatigue state, and the last 5 minutes
were labeled as the fatigue state.

The data comprised of 30 EEG channels (Fpl, Fp2, Fz, F3, F4, F7, F8, Fz, FC3,
FC4,FT7,FT8, T3, C3, Cz, C4, T4, TP7, CP3, CPz, CP4, TPS, T5, P3, Pz, P4, T6, O1,
Oz, 02), referenced to two electrically linked mastoids at A1 and A2, and sampled at
1000 Hz. Additionally, horizontal and vertical EOG signals were recorded to monitor
eye movements and blinks. As the pre-processing step, EEG signals were band-pass
filtered with a frequency range of 1-30 Hz and down-sampled to 256 Hz for reducing
the computational load. Then, EEG data were segmented into 20s-long epochs [124,
148] to generate 14 segments. With 12 participants, a total of 168 segments were
formed for the alert state, and 168 segments were formed for the fatigue state. To
increment the resemblance of data analysis with a consumer prefrontal EEG headset
[164], only Fpl and Fp2 channels are used to detect the driver fatigue.

3.1.3. Results

Eye blink detection and filtering

According to the manual inspection of simultaneously recorded eye blinks
channels, the proposed algorithm could detect 92% and 89% of eye blink with FDR
of 5% and 4% in alert and fatigue states, respectively. Fig. 3.4 shows examples of
the filtered driver EEG signals in fatigue and alert states. While both algorithms
suppressed eye blink components adequately in the alert state, it seems that the
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proposed algorithm surpassed the MAICA in the fatigue state.
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Fig. 3.4. Examples of two-channel EEG configuration (Fpl and Fp2) with the
corresponding filtered signals in fatigue (a) and alert (b) states.

Driver fatigue detection

To assess the improvement of driver fatigue detection after eye blink detection
and removal, firstly, the classification results are shown in terms of band power features
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of the raw and filtered EEG signal by both algorithms, and solely blink features (Table
3.1). The comparison between blink and unfiltered band power EEG features confirms
the superiority of EEG over the blink analysis with a higher mean of Sen (64% vs.
61.4%), Spe (65.8% vs. 58.6%), and Acc (64.3% vs. 60.1%). For the filtering scenario,
as observable, the proposed algorithm outperformed the MAICA by a higher mean
of Sen (72.4% vs. 68.1%), Spe (70.7% vs. 67.6%), and Acc (71.1% vs. 67.7%),
confirming the better quality of eye blink filtering.

Table 3.1. Mean+standard deviation of Sen, Spe, and Acc for the blink and EEG
band power features of raw and filtered EEG signals.

Scenario Sen (%)  Spe (%)  Acc (%)
Raw EEG 64.0+1.7 65.8+2.1 64.3+1.3
Blink 61.4+1.8 58.6+1.5 60.1+1.4
MAICA 68.1+1.8 67.6+1.9 67.7+1.5

VME-PCA-DWT 724412 70.7+14 71.1+1.1

Fig. 3.5 shows the improvement of driver fatigue detection with employing BR
and ABA as complementary features besides the band power features of EEG signals
before and after eye blink removal by the proposed algorithm. As it is shown, a higher
mean of Sen (80.7% vs. 72.1%), Spe (75.2% vs. 70.1%), and Acc (78.1% vs. 71.2%)
were achieved by simultaneous eye blink feature extraction and elimination.
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Fig. 3.5. The quality improvement of driver fatigue detection when using BR and BA
before and after eye blink removal by the proposed algorithm. EB indicates eye blink.
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3.1.4. Discussion

Here, an algorithm that entails both extraction of blink-related features and the
elimination of eye blinks from low-channel prefrontal EEG signals to improve the
quality of driver fatigue detection was presented. The current state-of-the-art research
either considers eye blinks as a source of information [148, 149] or artifacts [139, 140],
while undermining the possibility that eye blinks can be a source of both. Indeed,
we have shown that blink feature extraction followed by its removal from low-channel
prefrontal EEG signals could further increase the accuracy of driver fatigue detection,
when compared to those that consider it either as solely a source of artifact or
information.

There are four motivations behind the selection of such a channel configuration
(Fpl and Fp2). Firstly, we could investigate the quality of eye blink removal in
real-world EEG signals by the classification results of the driver states. Indeed, the eye
blink has its strongest power in prefrontal channels, therefore, it is expected to affect
the classification results [140]. Secondly, extracting BR and ABA from one prefrontal
channel can be more effective than other EEG channels as eye blink strongly influences
the forehead EEG channels [147]. Thirdly, by using such a configuration, we can claim
that the proposed algorithm can be integrated into low-cost EEG headbands such as the
brainmachine system [164]. Fourthly, collecting EEG signals from the hairless region
is less challenging for daily basis and long-term monitoring. Indeed, placing the EEG
headset at the back of the head for monitoring posterior EEG signals can yield the
inconvenience for drivers by not allowing them to use the headrest [148]. Yet, some
researches showed that analysis of posterior EEG signals may achieve a better accuracy
for the detection of the driver fatigue [149, 152].

In the first experiment, the proposed algorithm outperformed the MAICA for
eye blink removal by showing 4.3%, 3.1%, and 3.4% higher mean values for Sen,
Spe, and Acc, respectively (Table 3.1). The plausible explanations of such superiority
can be twofold. Firstly, the proposed algorithm identifies the EBIs (e.g., 1.5s) and
only filters such segments, thus, it is less invasive to the non-artifactual segments of
EEG signals. On the other hand, the MAICA filters the whole length of EEG signals
(i.e., 20 s), therefore, some non-artifactual components can be removed. Secondly,
despite the fact that MAICA rejects the artifactual ICs and reconstructs the filtered
signal with the remaining ones, the proposed algorithm uses the DWT to filter eye
blink components from the artifactual PCs. This property can significantly improve
the quality of filtering in low-channel EEG systems where the number of the extracted
components is equal to the number of available EEG channels [45,68]. One may argue
that the MAICA may generate more ICs if a different configuration of parameters is
set, therefore, ICs rejection should not highly affect the filtering performance. It should
be noted that generating more artificial data increases the computational complexity.
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In addition, adjustment of the parameters for every new data makes the algorithm
subject-dependent.

The second experiment aimed at investigating the quality enhancement of driver
fatigue detection by using the derived BR and ABA besides the band power features
of EEG signals before and after eye blink removal by the proposed algorithm. The
comparison between Table 3.1 and Fig. 3.5 shows the employment of BR and ABA
could enhance the Acc of the driver state in both raw (71.2% vs. 64.0%) and filtered
(78.1% vs. 71.1%) EEG signals. On the other hand, adding BR and ABA to the
band power features of filtered EEG signals showed a noticeable improvement in the
mean value of Sen, Spe, and Acc by 8.6%, 5.1%, and 6.9%, compared to the band
power features of the raw EEG. Basically, the obtained results confirm the usefulness
of employing BR and ABA as complementary features for analyzing the EEG driver
monitoring in low-channel EEG signals.

While the proposed algorithm could properly extract blink-related features and
remove eye blinks from low-channel prefrontal EEG signals to improve the accuracy
of driver fatigue detection, there are some conditions that should be considered.
Firstly, the EBI detection is highly sensitive to the existence of DC components and
low frequency artifacts such as electrode drifts, therefore, the EEG signals must be
passed through a high-pass filter with a cut-off frequency of 1 Hz. Secondly, the
proposed algorithm only filters eye blink artifacts, but not other artifacts such as muscle
contractions. Elimination of other artifacts may also improve the detection of driver
fatigue [140, 153]. Yet, the proposed algorithm can be used in conjunction with other
EEG denoising algorithms such as [165, 166]. Thirdly, we have only considered EEG
band power features, BR, and ABA to form the feature vector. It should be possible
to improve the quality of the driver fatigue detection by employing more features and
advanced classifiers, as described in [134,146]. Nevertheless, here, we primarily aimed
to show the importance of simultaneous eye blink feature extraction and elimination
for the EEG-based monitoring of the driver state. The major limitation of this work
is to use one public driver EEG database which contains only young healthy male
subjects. Some studies showed that age and gender characteristics of subjects may
also be important factors yielding the fatigue driving [167-170]. Thus, the future
work direction will be validating the robustness of the proposed algorithm on a larger
database with more diverse cohorts (e.g., female and elderly subjects).

3.2. Fusion of EEG and Eye Blink Analysis using a Single Fp1 Channel

Although several EEG-based studies reported the accuracy above 90% for the
detection of driver fatigue, a majority of them have considered multi-channel EEG
recordings, e.g., [131, 135, 171-173], which increases the complexity of wearable
instrumentation [174] and is cumbersome for the long-term driving. Yet, the advent
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of low-cost portable single channel EEG headbands has provided a new possibility for
the driver fatigue detection in the real-world scenario [140, 175]. On the other hand,
recording EEG from the prefrontal cortex can be more convenient since it is a non-hair
bearing area, i.e., it is less suspicious to noise [139], and can provide the user with
more comfort by allowing them to use the headrest during driving [148]. Moreover,
the emergence of eye blinks in prefrontal EEG signals can also be used to characterize
the fatigue driving [147]. Hence, algorithms capable of detecting the driver fatigue by
using a single prefrontal EEG channel should be prioritized.

According to the best of author knowledge, only a few studies have investigated
the effectiveness of prefrontal EEG signals for the detection of driver fatigue. Ogino et
al. [176] employed the PSD of an Fp1 EEG channel and reported the accuracy of 64.9%
by a SVM classifier. Qiu et al. [153] investigated the performance of three entropy
features, i.e., permutation, sample, and fuzzy, for detection of the driver fatigue using
Fp1 and Fp2 EEG channels and reported the accuracy of 95%. In another study, Cai
et al. [177] derived 9 entropy measures from Fpl and Fp2 channels and reported the
accuracy of 94% by the light gradient boosting machine classifier. More interestingly,
Ko et al. [148] showed that extracting blink-related features from a prefrontal EEG
channel enhanced the accuracy of driver fatigue detection when employed alongside
the EEG. Indeed, despite the aforementioned studies that considered eye blinks as
a source of artifact in prefrontal EEG channels that should be removed before the
EEG analysis, it was shown that extracting blink features combined with band power
analysis of EEG can help improve the accuracy of monitoring a driver’s cognitive state.
Followed by [147,148], in our previous study [20], we showed that the eye blinks have
both beneficial and detrimental influence on the prefrontal EEG signals for the driver
fatigue detection. After extracting the blink-related measures and removing eye blinks
from the Fpl and Fp2 channels, the RBP of the filtered EEG signals and the blink
features were fed to a SVM, and the mean accuracy of 78.2% was achieved.

In spite of the promising results reported by the mentioned studies, employing
only one database for the detection of driver fatigue is a potential limitation. In
particular, when using nonlinear measures such as entropy, the interchangeability
of tuned features for other databases is of great importance. Here, we present an
algorithm for the detection of driver fatigue while using a single Fpl EEG channel,
where its performance is evaluated by two different databases; the first one is used for
the adjustment of the proposed method’s parameters, whereas the second one is used
to evaluate the effectiveness of the tuned parameters.

Generally, the onset of fatigue in EEG might be better revealed by its sub-bands
analysis [126, 148, 176, 178]. On the other hand, as shown in the context of
consciousness studies that EEG may show more complexity when the subject is in
an alert state [104, 137, 179], it can be expected that complexity measures will be
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good indicators for the detection of driver fatigue. Furthermore, it has been shown
that blinks have both beneficial and detrimental influence on EEG for the detection of
driver fatigue [20]. Supported by the above-mentioned presumptions, our proposed
algorithm firstly identifies EBIs in EEG by the moving standard deviation (MSD)
algorithm to extract blink-related features. Secondly, EBIs are filtered from the EEG
by the DWT. Thirdly, the filtered EEG is split into its sub-bands for the extraction
of RBP and nonlinear measures. Finally, the prominent features are selected by the
neighborhood component analysis (NCA) algorithm and fed to different classifiers for
discrimination of the fatigue and alert driving.

3.2.1. The proposed algorithm

The block diagram of the proposed algorithm is illustrated in Fig. 3.6. As
shown, firstly, the raw EEG signal is band-pass filtered for the noise reduction and
re-sampled for reducing the computational burden. Secondly, EBIs are identified by
using the MSD algorithm, and three blink-related measures are derived. Thirdly, the
identified EBIs are filtered from the EEG signal based on the DWT algorithm, and then
linear and nonlinear features are extracted from the filtered EEG sub-bands. Finally, a
subset of prominent features is selected and fed to different classifiers to discriminate
between the fatigue from alert driving states. The detailed explanation of the proposed
algorithm is described in subsections below.

detection
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Fig. 3.6. Block diagram of the proposed method for classifying the fatigue and alert
driving by using a single Fp1 EEG channel.
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Pre-processing

In order to remove high and low frequency artifacts from the EEG signal, a
zero-phase fourth order Butterworth band-pass filter with the cut-off frequencies at
1 and 40 Hz is applied to the raw EEG signal. Then, the filtered signal is re-sampled
to 100 Hz to reduce the computational burden.

Detection of eye blink intervals

The basis of MSD is to perform window sliding on the whole sequence of a signal
to compute the standard deviation values of the local k data points, where k is the width
of the window. Due to the substantial differences in the inherent characteristics of eye
blink and EEG signal, it is expected that EBIs be reflected in the amplitude of the MSD
sequence obtained from the contaminated EEG signal. In order to detect EBIs, firstly,
the local maxima of the MSD sequence obtained from the EEG are identified. Then,
those with a value greater than the modified universal threshold (T4,) [20] are selected
as the potential eye blink highest peaks (Fig. 3.7b)

_,( median(|s(n)|)
Th, _A(W>\/ZlnN, (3.10)

where s(n) is the MSD of EEG, N is the signal length, and A is the scaling factor.
Secondly, if the distance between two potential eye blink highest peaks is less than
0.2s, the higher peak is selected as the final candidate (Fig. 3.7c). Thirdly, the identified
eye blink highest peaks are projected to the EEG signal. As shown in Fig. 3.7d, the
locations of the eye blink highest peaks in the EEG are not accurate. To overcome this
problem, a window is formed around each identified peak with a 0.2s length before and
after the peak. Then, the maximum signal value within this window is considered as
the highest eye blink point (Fig. 3.7e). After finding the highest peak of EBIs, given
the fact that an EBI duration usually varies from 200 to 500ms [67], S00ms intervals
(125ms pre- and 375ms post the highest amplitude peaks) are chosen as the identified
EBIs (Fig. 3.7f). The main steps of the MSD-based method for the identification of
EBIs are summarized in Algorithm 3.

Blink-related features

As stated above, blink measures extracted from the EEG have been shown
promising for the detection of driver fatigue. It is common knowledge that when
subjects are performing tasks requiring visual attention, e.g., driving, they blink less
to stay more focused [180, 181]. Consequently, given the fact that the concentration
level decreases in the fatigue state, blink-related measures can be of discriminative
power in the classification between alertness and fatigue states. In particular, it was
demonstrated that while the eye blink rate increases in the fatigue state, its amplitude
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decreases [148]. Justified similarly, three blink measures called BR, ABA, and the
average distance between the blinks (ABD) are computed. Let z[n], n = 1,2, ...N be the
20s contaminated EEG signal, M = M|, M,,..M; where M € n be the location of the
detected eye blinks, and i be the number of the detected blinks (Fig. 3.8). The BR,
ABA, and ABD are expressed as follows:

BR = %, 3.11)
ABA = w (3.12)
ABD = =M — M) (3.13)

Filtering of eye blink intervals from EEG

Although blink-related features extracted from EEG are promising for the
detection of fatigue driving [147, 148], eye blinks have been shown to have an adverse
influence on the analysis of EEG due to their amplitude [20]. To minimize such a
negative influence, given the sampling rate and the frequency range of eye blinks in
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Algorithm 3: The MSD for localization of one EBI

Input: EEG z(n), Fs, k

QOutput: EBI highest peak n;, EBI z, (n)
Initialisation Thl « 0,q « [],r « [],m < 1

1: s(n) «MSD(z(n), k)

2: Thl « see equation (4)

3: for i = 2 to length(z(n)) — 1 do

4 ifs(i) >s(i—-1) && s(i) >s(i+1) && s(i) > Thl then

5: q < [q 1]

6:

7

8

9

end if
: end for
: for i = 1tolength(g) — 1 do
d < abs(q; — q;11)
10: r < q;
11: whiled < 0.2 x Fsdo
12 r « find(s = max(s(q;),s(g;+1)))
13: mem+1
14:  end while
15 i<i+m
16:  onset; « r—0.2xFs
17:  offset; «r+02xFs
18:  zy(n) < z(onset; : offset;)
19:  np « find(zy(n) = max(z;(n)))
20:  onsety « ny —0.125 x F's
21:  offsety « n; +0.375 x F's
22:  zp(n) « z(onset, : offset,)
23: end for
24: return nq, z,(n)

z[n]

I

I

|

|

|
. |
M, M, M, M,

Fig. 3.8. An example for extraction of the blink-related features from an Fpl EEG
channel. M stands for the locations of four (i=4) blinks.

EEQG, i.e., 0.5 to 7.5 Hz, the identified EBIs are filtered by hard-thresholding DWT
with three decomposition levels, where those values of the component at each level
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that transcend the universal threshold are settled to zero. Then, the filtered EEG signal
is restored by inverse DWT of the thresholded components.

EEG sub-bands extraction

One of the main applications of DWT in EEG studies is to extract its sub-bands
[34,182]. Given the reduced sampling rate of EEG, four-level DWT can extract EEG
sub-bands, where detail components of the first, second, third and fourth level associate
with gamma (y, >25 Hz), beta (8, 12.5-25 Hz), alpha («, 6.25-12.5 Hz), and theta
(0, 3.125-6.25 Hz), respectively, and the fourth level of approximation component
corresponds to the delta (8, <3.25 Hz) band.

EEG features

After eye blink removal and splitting the EEG into its sub-bands, eight features,
namely, RBP, log energy entropy (LeEn), Shannon entropy (SE), DispEn, BubbEn,
HFD, KFD, and Hurst exponent (HE), are extracted from each sub-band as follows:

N
LeEn = - ) (log, (p(B,)”. (3.14)
i=1
N
ShEn = - )" p(B;) x log, (p(B;)), (3.15)
i=1
_log, (R/S)
HE = —logz(L) , (3.16)

where B stands for the sub-band, p represents the probability of obtaining B,, and R, S,
and L represents the range, standard deviation, and the length of the sub-band.

Following the presumption that altering the power ratio of EEG sub-bands is
correlated with the fatigue state [126, 148, 176], i.e., the power ratio of EEG higher
frequency bands decrease while the opposite for the lower bands happens, it can
also be expected that the extraction of nonlinear measures from EEG sub-bands is
more effective than the signal itself. Therefore, in addition to the RBP, FD and
entropy measures are also extracted. The FD features measure the degree of the
signal’s complexity and self-similarity by evaluating how quickly the signal increases
or decreases with altering the scale. On the other hand, entropy features assess the
signal’s uncertainty. As EEG is assumed to show more complexity and uncertainty in
the alert state [104, 183], such measures can be good markers for the fatigue detection.
The tuning of the nonlinear features is described in Section 3.2.3.
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Feature selection

In total, 43 features (3 blink-related) are extracted from the EEG signal. To reduce
the dimension of the feature vector, we employ the NCA [184], which selects the best
feature subset by maximizing an object function, assessing the mean leave-one-out
classification accuracy over the training data. Indeed, NCA outputs a weighting vector
related to the feature vector by optimizing the nearest neighbour learning classifier.
The reason for using the NCA over the other feature selection methods is that it is a
non-parametric algorithm, therefore, no specific regulations are required.

Classification

After selecting the prominent features, they are normalized by using the z-score
approach and randomly divided into the training-validation (70%) and test (30%)
subsets. To secure the robustness of results, the training-validation process is
conducted according to the 10-fold CV, and the testing is only established on the unseen
subset. Here, we used SVM, linear discriminant analysis (LDA), k-nearest neighbor
(kNN), and AdaBoost, artificial neural network (ANN), and random forest (RF) models
to classify between the fatigue and alert driving states. The motivation behind using
these models is their proven feasibility for the EEG-based studies, in particular, driver
fatigue detection [139,173,174,185]. The fine-tuning of the model’s hyperparameters
is conducted during the training-validation step by the Bayesian optimization method
[186].

Evaluation criteria
Eye blink detection and filtering
To investigate the performance of eye blink detection, the critical success index

(CSI) is used as follows:
TP

~ TP+FN+EFP’

where TP, FN, and FP represent the number of correctly, missed, and falsely detected
eye blinks. Regarding the eye blink filtering, given that both databases contain the

CSI (3.17)

concurrent recorded EOG signals, the SNR is utilized as follows:

%ZZ] PSDEEG)’ (3.18)

% it PSDrog
where PSD stands for the power spectral density [187]. It should be noted that the SNR

of the raw EEG is computed before applying any filtering, and the SNR of filtered EEG
signal is computed based on filtered EEG and estimated EOG signal by the proposed

SNR = 10 x log, , (

algorithm.
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Model assessment

The performance of the models is assessed according to the Sen, Spe, Acc, and
AUC, as explained in the previous chapter.

3.2.2. Data

Here, we used two different databases to validate the performance of the proposed
algorithm. The first one was used for tuning the parameters of the proposed algorithm,
whereas the second one was only employed for assessing the robustness of the tuned
parameters. To increase the analogy of data analysis with a consumer prefrontal EEG
headset (NeuroSky) [16], only the Fp1 channel was used.

Database A

Database A, used in this section, is the same database detailed in the previous
section. For more information, refer to Section 3.1.2.

Database B

This database comprises of EEG signals collected from 16 subjects (8 male) aged
from 17 to 25 in a platform environment with a static simulator [153]. To collect the
EEG, a 32-channels EEG cap system, referenced to the A2 mastoid with a sampling rate
of 1000 Hz was used. Additionally, vertical EOG signals were recorded concurrently.
All subjects were healthy during the experiment week, and had a proper sleep the
night before the experiment. They were also prohibited to consume beverages that
contain caffeine or alcohol. Before performing the experiment, the subjects were
familiarized with the experimental environment and the operation process. After
ensuring the subjects’ preparation and calmness during the experiment, laboratory
assistants commenced to record 5 minutes of EEG data, which were labeled as the alert
state. After that, the subjects were asked to keep driving till the Li’s subjective fatigue
scale and Borg’s CR-10 scale indicated that the subject was in the fatigue state. Then,
the last 5 minutes of the EEG data were labeled as the fatigue state. Accordingly, 480
20s-long EEG epochs in the fatigue and alert states are formed, of which 240 belong
to the fatigue state.

3.2.3. Results

In this section, the experimental results obtained from both databases are
described. It should be noted that the regulation of the required parameters for eye
blink detection and nonlinear measures, as well as the feature selection, have been
conducted on the EEG signals from Database A. Then, the tuned parameters and the
selected features were used for the analysis of Database B.
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Eye blink detection, filtering, and feature extraction

The MSD algorithm requires two parameters to be tuned for EBIs detection; the
window length & and the scaling coefficient of the universal threshold A. Regarding the
window length, we have considered values from 0.1s to 0.3s with a step size of 0.05s.
Although no noticeable difference was found in the morphology of EBIs, we selected
k = 0.2s (Fig. 3.9).

=015 k=0.1  z[n]

=0.25 k=0.2 k

k=0.3 k

o

5 10 15 20
Time [s]

Fig. 3.9. The contaminated EEG (dark below) and its corresponding MSDs with
different window sizes (green).

Regarding the scaling factor of the universal threshold, values from 0.25 to 1 with
a step size of 0.25 were investigated. The best fit, A = 0.5, was selected based on the
highest mean of CSI (Fig. 3.10a). Afterwards, the identified EBIs were filtered based
on the DWT. Given having the simultaneous recorded vertical EOG, the SNR values
were compared before and after the filtering (Fig. 3.10b). The adequacy of the tuned
parameters for the detection and filtering of EBIs for Database B was also confirmed
in Fig. 3.10(c—d).

In order to compare the performance of eye blink detection of the proposed
method with our previous study [20], the CSI in terms of mean + standard deviation
is displayed in Table 3.2. Although the MSD outperformed the VME, according to
the conducted independent two-sample t-test, no statistical difference was observed
between the obtained results (p>0.05). Yet, the MSD performed faster than the VME
as less computations are required.

Tuning EEG nonlinear features

In order to tune the parameters of the employed nonlinear measures that required
optimization, i.e., DispEn, BubbEn, and HFD, we considered the lowest p value of
conducted Wilcoxon Rank-Sum Test between the alert and fatigue driving cases [34].
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Fig. 3.10. Results for EBIs detection and filtering. Database A (a)-(b), and Database
B (¢)-(d).

Table 3.2. The comparison between eye blink detection methods in terms of mean +
standard deviation of CSI values.

Database MSD VME
Database A 96.8 +3.2 944 +43

Database B 94.6 + 3.7 922 +5.3

Regarding the HFD, the maximum interval time, K,,,., that FD values are computed in,
values from 2 to 10 were varied, and K,,,,.=4 was found as the finest value. Regarding
the embedding dimension of BubbEn, values from 4 to 16 were tested. We selected
the embedding dimension of 8 as a good fit. Regarding the DispEn, we tested several
configurations, and found the embedding dimension of 4, 2 number of classes, and the
time lag of 1 as a good fit.

Classification results

Table 3.3 displays the weighted features using NCA, optimized by the stochastic
gradient descent algorithm. The features with a weight value greater than 0.5 (18
features) are selected for the classification. Fig. 3.11 demonstrates the classification
results of the unseen testing data in terms of Acc, Sen, Spe, and AUC for all four
models. The comparison confirms the superiority of the AdaBoost over the other
models. When fed the selected feature set of Database A to the models, the AdaBoost
classifier outperformed the others by showing the mean Acc, Sen, Spe, and AUC of
88.4%, 90.2%, 87.7%, and 0.94, respectively. Followed by that, SVM with the mean
Acc of 83.7% was the second best model (Fig. 3.11a-b).
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Table 3.3. The weighted features by using NCA, (selected features are in bold).

Features Weights
EEG bands
Delta Theta Alpha Beta Gamma

RBP 059 0.13 021 1.84 0.31
DispEn  0.74 0.12  0.05 0.31 0.56
BubbEn 0.07 0.08 0.14 0.01 0.74
HFD 0.11 034 086 142 0.85
KFD 0.09 1.26 171  0.33 1.16
HE 002 036 001 001 1.14
WLE 1.38 173 035 0.13 1.98
SE 0.08 088 0.04 024 0.37

blink
BR 1.12
ABA 0.79
ABD 0.05

I svv [ o [ N N Adagcost NN AN [ RF

951 @ ®)
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SVM, AUC=0.89
LAD, AUC=0.80
KNN. AUC=0.85
AdaBoost, AUC=0.94
ANN, AUC=0.82

RF, AUC=0.90

RF, AUC=0.85
LDA, AUC=0.77
NN, AUC=0.81
SVM, AUC=0.87
ANN, AUC=0.78
AdaBoost, AUC=0.93
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Fig. 3.11. Classification results for the detection of driver fatigue by all models.
Database A (a)-(b), Database B (c)-(d).

Based on the performed independent two-sample t-test, there is a statistically
significant difference between the Acc, Sen, and Spc values of AdaBoost and other
classifiers (p<0.05). Regarding Database B, (Fig. 3.11c—d), similar to Database A, the
AdaBoost model achieved the highest mean Acc, Sen, Spe, and AUC values of 87.4%,
85.5%, 86.8, and 0.93, respectively. Except for the Spe values of AdaBoost, SVM,
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and REF, there is a statistically significant difference between the obtained results by
AdaBoost and other classifiers (p<0.05).

Comparison with state-of-the-art methods

Table 3.4 displays the comparison between the proposed and state-of-the-art
methods in terms of the number of channels, subjects, and databases, as well as the
epoch length, training-testing approach, and average classification metrics. It is worth
to be mentioned that we have only considered studies that used EEG signals from the
prefrontal cortex.

Table 3.4. The comparison between the proposed and state-of-the-art methods.
LOSOCYV and LOOCY stand for leave-one-subject-out and leave-one-out
cross-validation, respectively.

study ~ Channel  No. Database Epoch length  No. Subjects Training-testing approach Mean Acc (%) Mean Sen (%) Mean Spe (%)

[148] Fpl 1 20s 15 LOSOCV 68.0 58.0 73.0
[176] Fpl 1 10s 29 10-fold CV 727 88.7 452
[153] Fpl &Fp2 1 Is 16 10-fold CV 95.3 NA NA
[177] Fpl &Fp2 1 Is 35 Loocv 94.2 94.0 94.3
[20]  Fpl &Fp2 1 20s 12 10-fold CV 78.1 80.7 752
2

Database A 12 Random sampling 88.4 90.2 87.7

Ours Fpl Database B 20s 16 Random sampling 86.6 87.4 85.5

Although, due to using different databases, epoch length, subjects, and
training-testing approach, it is inequitable to quantitatively compare the performance
of the proposed method with other studies, the consistency of the obtained results from
two different databases using the proposed method cannot be neglected. Indeed, the
robustness of our algorithm was proven based on two different databases, which is not
the case for the mentioned studies. In addition, studies [153] and [177] employed two
prefrontal EEG channels for the driver fatigue detection. According to the best of our
knowledge, currently, no such EEG headbands with this channel configuration exist in
the market. Nevertheless, it should be mentioned that the reported results from [148]
are based on leave-one-subject-out (inter-subject) cross-validation, i.e., verifying the
possibility of generalized model establishment, which was not investigate here.

3.2.4. Discussion

The objective of this chapter was to present an algorithm for the detection
of driver fatigue based on concurrent analysis of EEG and blinks through a single
prefrontal channel, oriented towards the pragmatic limitations of the current studies.
The most of the current methods were developed based on multi-channel EEG
recordings, not suitable for a practical application, as wearing an EEG cap with several
accessories (electrodes and cables) may inconvenience the user for the long-term
driving. Furthermore, multi-channel EEG configuration usually covers hair-bearing
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areas of the scalp that are more susceptible to noise [148, 178]. Contrastingly,
employing a single prefrontal EEG channel provides the user with more comfort as
only one electrode is placed on the forehead, which is a hairless area. Moreover,
the prefrontal EEG signal contains eye blinks that their changes have been shown to
correlate with the transition from the alert to the fatigued state [147,148,180], therefore,
blink-related measures can be extracted from the prefrontal EEG channel and used as
a complementary information.

On the other hand, a few studies that addressed the fatigue driving detection
based on the single or low prefrontal EEG channels only employed one database to
develop and test the performance of the proposed algorithms [20, 148,153,176, 177].
Unarguably, the interchangeability of methods presented for detecting the driver
fatigue while using different databases, which is of great importance for the real-world
applications, was undermined in literature. To overcome the mentioned problem, we
assessed the effectiveness of the proposed algorithm in detecting the fatigue driving
by employing two databases; the first database was used for the parameter tuning and
the other for the testing.

Due to both beneficial and detrimental influence of eye blinks on EEG-based
fatigue driving detection [20], a hybrid algorithm based on MSD and DWT was used
to locate the EBIs, extract blink-related features, and then filter them out from the
EEG signal. As displayed in Fig. 3.10, while using different databases, the proposed
MSD-DWT showed the comparable performance for eye blink detection and filtering,
indicating its robustness for an unseen database.

Considering the fact that the interchangeability of a proposed feature set for
other EEG signals recorded with distinctive characteristics plays a vital role for
real-world applications, we employed two different databases; one was used for
such tuning, whereas the other one was used only for testing. When comparing
the obtained results by the AdaBoost classifier from Database A and B, Database
A only gained 2.8%, 2.2%, and 1.6% higher mean for the Sen, Spe, and Acc,
respectively, indicating the interchangeability of the tuned parameters of the used
nonlinear measures. Analogously, the obtained average accuracy results by other
models from both databases also showed less than 2% difference. Nevertheless, it
should be noted that one cannot deduct that the power of interchangeability of the
proposed algorithm is greater than the methods under comparison as such a test has
not been done.

Even though [153] and [177] outperformed the proposed algorithm in terms of
classification metrics, these studies have some limitations. The former only reported
results on male subjects. This is while some studies showed the difference of EEG
characteristics between males and females [188]. The latter also used some entropy
measures, e.g., fuzzy, which require the tuning of several parameters. As it was
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already mentioned, it is important to evaluate the robustness of tuned feature with other
databases.

Although the reported results are promising, there are a few issues that must be
considered for the future work. Firstly, due to the small number of subjects in each
database, the inter-subject variability analysis has not been addressed here. Therefore,
the performance of the proposed method should be further investigated with a larger
number of subjects. Secondly, we have only investigated 20s-long EEG epochs for
the detection of driver fatigue. Although it has been considered as a proper length
[104, 148], the analysis of a shorter time interval would be of primary importance
for the real-world applications. Thirdly, we have only considered classifiers that are
commonly used for the EEG-based brain computer-interface systems [131, 139]. It
might be possible to improve the classification results by using advanced classifiers
such as XG-Boost and deep neural network. Fourthly, we have not considered the
EEG channel configuration based on other available EEG consumer headbands, e.g.,
Emotive. In the future work, we should investigate the performance of the proposed
method based on other consumer EEG headbands in the market. Fifthly, we have only
employed the DWT for eye blink removal from EEG. It may be possible to further
improve the performance of filtering by using methods such as the wavelet packed
decomposition [189]. However, it also increases the computational complexity. Lastly,
we have tuned the required parameters of the proposed algorithm based on Database
A, which contains only male subjects. One may argue that it would be better to
adjust parameters with Database B as it has both genders. Yet, we decided to test
the performance of the proposed algorithm on a database with both genders.

3.3. Conclusions of the Chapter

1. Eye blinks serve dual roles as both a source of information and artifacts
in detecting driver fatigue by using prefrontal EEG signals. Comparing the synergy
of the eye blink and RBP EEG features before and after filtering revealed a notable
improvement in the mean accuracy of driver fatigue detection (71.2% vs. 78.1%).

2. The proposed driver fatigue detection algorithm, which relies on
simultaneous EEG and eye blink analysis using an Fpl EEG channel, demonstrated
robust performance across two databases with different recording characteristics,
achieving comparable accuracy values of (88.4% vs. 86.8%).

3. The combination of RBP and nonlinear features extracted from a single
prefrontal EEG channel, in addition to eye blink features, outperformed the RBP
features derived from two prefrontal EEG channels for the detection of driver fatigue
(88.4% vs. 71.1%).
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4. DEPTH OF ANESTHESIA MONITORING

Anesthesia is another critical field for assessing varying levels of consciousness,
creating a continuum from full awareness to complete unresponsiveness. The use of
low-cost portable EEG systems for anesthesia monitoring is more affordable than the
current commercial systems as it eliminates the need for disposable electrodes per
subject, leading to a cost-effective and environmentally sustainable alternative.

General anesthesia represents a pharmacologically induced reversible state
of unconsciousness, facilitating the secure execution of surgical procedures [190].
Ensuring the proper level of unconsciousness during surgery is essential as there is
growing evidence of detrimental effects of excessive hypnotic depth and potentially
inadequate hypnosis [10, 191]. While the former is associated with adverse
cardiovascular and respiratory effects, delayed recovery, as well as postoperative
delirium and postoperative cognitive dysfunction [192], the latter can lead to accidental
intraoperative awareness, accompanied by its psychological consequences, including
the development of posttraumatic stress disorder [193]. In addition, continuous
monitoring of depth of anesthesia (DoA) can provide economic benefits by preventing
the wastage of anesthetics, which has been identified as a significant contributor to the
overall cost of anesthesia procedures [11, 194]. Thus, DoA monitoring benefits the
patient and promotes the efficient use of resources in the healthcare system.

Anesthetics profoundly influence the brain’s electrical activity, leading to
discernible alterations in EEG oscillations [195]. Consequently, EEG is considered
the gold standard method for DoA monitoring [196]. As the use of raw EEG is not a
standard practice in an operating room, the demand arose for introducing a processed
electroencephalogram, which involves simplifying EEG data into easily interpretable
numeric values [197]. To this end, various systems employing different algorithms
for EEG-based DoA monitoring have been developed and are being widely utilized in
clinical practices and research [198]. These systems aim to quantify the DoA using
predominantly EEG signals recorded from the prefrontal cortex and represented on
a numerical scale [199]. For example, the bispectral index (BIS) monitor, the first
EEG-based commercial DoA device, gauges the DoA on a scale from 0 to 100, where
0 denotes the absence of brain activity, and 100 indicates complete alertness [200].
Nonetheless, these systems may not be accessible to developing countries due to
their high cost and reliance on single-use sensors, making them expensive for routine
anesthetic practice. Consequently, various algorithms have been developed to monitor
the DoA using EEG signals recorded by conventional systems [201].

Generally, two main approaches are commonly employed: feature extraction and
deep learning methods. Regarding the feature extraction, several measures have been
extracted from EEG signals to monitor DoA. These features aim to capture various
aspects of brain activity that can reflect consciousness and DoA. One commonly
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utilized feature is the power spectral density, which quantifies power distribution
across different frequency bands in the EEG signal [202]. Additionally, entropy
measures, such as approximate entropy (AppEn) and SampEn, have been shown
to be promising for monitoring the DoA [203]. On the other hand, deep learning
architectures have demonstrated promising results in capturing complex temporal and
spatial dependencies within the EEG signals for DoA monitoring [204, 205]. In
particular, the employment of hybrid deep learning methods showed promising results
[206,207]. Moreover, several other analyses have been explored for DoA monitoring,
including functional connectivity [208], microstate analysis [209], unscented Kalman
filter-based neural mass modelling [210], amplitude modulation [211], and intrinsic
phase-amplitude coupling [212].

4.1. Entropy-based DoA Monitoring

The nonlinear characteristics of EEG signals have made entropy analysis
a popular approach for DoA monitoring [203]. This approach is based on the
understanding that as DoA increases and consciousness levels decrease, the complexity
of the EEG signal changes [205]. Entropy metrics, which quantify the irregularity
and complexity of EEG waveforms, are effective for this purpose. As DoA deepens,
EEG signals become more predictable and regular, leading to noticeable alternation
in entropy values. Thus, entropy analysis provides a promising method for assessing
consciousness levels during anesthesia by leveraging the nonlinear dynamics of EEG
signals to offer objective DoA measures.

According to the literature, four entropy metrics, namely, SampEn [213],
permutation entropy (PeEn) [214], spectral entropy (SpEn) [215], and AppEn [216],
have shown promising results for DoA monitoring using EEG. However, the utilization
of fuzzy entropy (FuzzEn) and slope entropy (SlopEn) in this context remains
insufficiently explored. This is while that these metrics have been proposed to
overcome the limitations of the conventional entropy metrics.

On one hand, FuzzEn was initially introduced to alleviate the limitations of
SampEn regarding class boundaries and data length [217]. In addition, FuzzEn
demonstrates adaptability to data characteristics by allowing computation based on
various membership functions [218]. This flexibility may provide a broader modeling
range for capturing complex relationships in EEG signals, accommodating variations
that may need to be more effectively captured by SampEn and AppEn measures.

On the other hand, SlopEn is designed to address the limitations of SampEn
regarding data length and PeEn in terms of disregarding the time series amplitude
information [219]. A recent study demonstrated that the spectral slope of EEG
decreases during anesthesia induction and increases during recovery [220]. Motivated
by above-mentioned study, SlopEn, which uniquely emphasizes variations in the signal
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slope, can be employed as an effective index for DoA monitoring. SlopEn quantifies
the rate of changes or slope of a signal’s variations over time, assessing how quickly
the signal values shift. Given that EEG patterns during anesthesia often exhibit a more
regular and synchronized activity, the use of SlopEn, which measures shifts in the EEG
signal, is expected to be valuable for DoA monitoring.

Here, the objectives are thus, to (i) investigate the performance of FuzzEn and
SlopEn for DoA monitoring and (ii) evaluate their effectiveness compared to SampEn,
SpEn and AppEn.

4.1.1. The proposed entropy-based algorithm for DoA monitoring

Fig. 4.1 displays the steps for DoA monitoring using different entropy metrics.
The details of each step are explained below.
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Fig. 4.1. The block diagram of DoA monitoring using different entropy metrics.

Pre-processing and sub-band decomposition

Prior to commencing the analysis, the EEG signals were segmented into 5-second
intervals, and segments lacking DoA index values were excluded from consideration.
Subsequently, a 4th-order Butterworth band-pass filter with cutoff frequencies at 0.5
Hz and 50 Hz was applied to eliminate very low and high-frequency noise components.
Then, artifacts resulting from medical equipment, eye blinks, or muscle movements
were removed by using a wavelet transform filter [18]. After the pre-processing phase,
the filtered EEG signal underwent decomposition into sub-bands using zero-phase
filters, encompassing the following frequency ranges: 0.5-4 Hz (§), 4-8 Hz (9),
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8-13 Hz (), 13-30 Hz (8), and 30-50 Hz (y).

Entropy metrics
After decomposing the EEG signal into its sub-bands, in addition to FuzzEn and
SlopEn, we also extracted SampEn, AppEn, SpEn for the quantitative comparison.

FuzzEn
The FuzzEn of a signal with the length of N is defined as follows:

Z1.\/—m+1 M(~m’d)
FuzzEn(m,r,d) = -In| =5——— |, 4.1)
Zi:lm u;nﬁ-l,d)
where u"? and u!™*'% represent membership values calculated based on the

Chebyshev distance. Azami et al. [217] systematically compared FuzzEn using various
membership functions (MFs) to discriminate between focal and non-focal EEG signals.
The fine-tuning was carried out through the defuzzification process. The results of their
study indicated that FuzzEn implemented with Gaussian (Gau): exp (—W) and

distlr;.x7) \ 2
Exponential (Exp): exp —# MFs perform the best for such discrimination.

As displayed, the process involves tuning three parameters: the embedding dimension
denoted as m, which determines the length of sequences for comparison; the threshold
represented by r, which balances the accuracy of logarithmic likelihood estimations
against potential signal information loss; and the time delay denoted as d, which
establishes the gap between successive data points.

SlopEn
Assume x(n) as the EEG signal; the following steps are performed to compute
the SlopEn:

* Transform the input signal x(n) into a reconstructed trajectory phase space using
time delay (d) embedding dimension () as:

X =[x(n),x(n-d),....x(n— (m-1)d)], 4.2)

n

» Compute the slope () of the reconstructed trajectory in the phase space based
on the following:

S=——=% A0, 4.3)

AB, = arctan (x(n —id) —x(n—- (i +1)d) ) ’

4.4)
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* Apply an angular threshold () to identify significant changes in the slope.

* Quantize the trajectory based on the identified significant slope changes,
resulting in N bins.

Calculate the probability (p;) of a data point falling into bin i:

_ Number of data points in bin i
Pi = Total number of data points

4.5)

* Compute the SlopEn using only the bins corresponding to significant slope
changes:
N
SlopEn = =" p, - log, (p,), (4.6)

i=1

Parameter tuning of entropy metrics

Regarding FuzzEn, for simplicity and to align with other entropy metrics, d = 1is
used here. However, the fine-tuning of m and r is crucial for the adequate performance
of FuzzEn. The results of [217] indicated that FuzzEn implemented with Gau and
Exp MFs, using values of m = 4 and r = 0.253 and 0.0018 multiplied by the standard
deviation of the signal, respectively, exhibited the most favorable performance.

The SlopEn requires the fine-tuning of three parameters: embedding dimension
m, time delay d, and an angular threshold range A#. Here, we use an embedding
dimension of 6, a time delay of 1, and an angular threshold within the range of [0,
45] degrees, adopted from the EEG analysis conducted in the reference work [219].

Table 4.1 presents the parameter values used for the entropy metrics. It is
important to note that the parameters for SampEn, AppEn, and SpEn are chosen
from [213], [216], and [215], respectively. These studies utilized these metrics for
the DoA monitoring based on a single frontal EEG signal.

Table 4.1. The values of parameters for the other entropy metrics. SD stands for
standard deviation.

Entropy metrics Parameters
SampEn m=2,r=02x8D,d=1
AppEn m=2,r=02xS8SD,d=1
SpEn N.A.
Fuzz;,, m=4,r=0.2553,d=1
FuZZExp m=4,r=0.0018xSD,d=1
SlopEn m=6,A0=[0 45°],d=1
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Regression

To predict DoA index values, we employed a feedforward neural network
regression model, where the fine-tuning of its hyperparameters was carried out through
the Bayesian optimization technique [186]. The feature vector was randomly divided
into two subsets: a training-validation set (70%), and a test set (30%). To ensure
the robustness of the results, the training-validation procedure adopted a 10-fold CV
approach, while the testing phase was exclusively executed on the previously unseen
subset. To assess the model performance, the mean absolute error (MAE) and CC were
employed, which are defined as follows:

MAE = u(|DoA indexg, — DoA indexg.l), “4.7)

cC = Cov(DoA indexg,, DoA mdeXRef)’ 4.8)

ODoA indexgg ODoA indexgefs

where p, Cov, o, Est, and Ref stand for mean, covariance, standard deviation, and
estimated and reference DoA index values, respectively.

4.1.2. Data

Here, a publicly accessible database is sourced from [213] is used which includes
a single frontal EEG channel and BIS data acquired from a cohort of 24 patients with
an average age of 44.5 £ 12.9 years, an average height of 164.2 + 7.1 centimetres, a
mean weight of 63.4 + 14.8 kilograms, BMI (kg/m?) averaging at 23.4 + 4.2, and the
gender distribution encompassing 14 female and 10 male participants. The surgical
procedure’s duration was recorded at an average of 126.4 £ 72.9 minutes.

Data recording commenced five minutes prior to induction onset, corresponding
to the fully conscious state, and concluded when the patients exhibited purposeful
responses to verbal instructions from the attending anesthesiologist. Intermittent
BIS measurements were obtained every 5 seconds using an EEG BIS Quatro Sensor
(Aspect Medical Systems, Newton, MA, US), while the continuous EEG waveform
signal was sampled at a rate of 128 Hz.

4.1.3. Results

Performance of individual entropy

Fig. 4.2 displays scatter plots illustrating the estimated DoA index values
compared to the reference values using individual entropy metrics. Upon examining
these scatter plots, a noticeable distinction becomes evident in the degree of
relationship and variability between the reference and the estimated data points
obtained using both FuzzEn metrics and SlopEn in contrast to the others. Notably, a
stronger correlation emerges between the reference and the estimated DoA index values

89



derived from the FuzzEn and SlopEn metrics, with the points clustering more closely
around a trendline. This heightened correlation implies a greater alignment between
the estimated values and the reference data, indicating a more accurate representation
of the underlying relationship. Additionally, the spread or dispersion of points in the
plots related to FuzzEn and SlopEn metrics appears to be lower, suggesting a higher

degree of consistency in the estimations.
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Fig. 4.2. Scatter plots between reference and estimated DoA index values for different
entropy metrics.

Table 4.2 compares different entropy metrics based on their performance in terms

of MAE and CC.

Table 4.2. The performance of each entropy for regressing the DoA index values.

Entropy type Metrics (u + o)
MAE CC

FuzzEn (Gau) 6.4+07 0.77 +0.02
FuzzyEn (Exp) 6.7+0.5 0.75+0.01

SlopEn 6.8+0.6 0.74 +0.03
SampEn 87+09 0.63+0.05
AppEn 89+ 1.1 0.61+004

SpEn 107+ 1.8 0.37+0.10

Both variations of FuzzEn and SlopEn exhibit relatively low MAE values of
6.4, 6.7, and 6.8 respectively, along with comparatively high CC values of 0.77, 0.75,
and 0.74, indicating strong correlations between the estimated and the reference DoA
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index values. Notably, SampEn and AppEn show higher MAE values of 8.7 and
8.9, respectively, with CC values of 0.63 and 0.61, suggesting moderate correlations
between the estimated and the reference DoA index values. According to the conducted
Mann-Whitney U test, no significant difference was observed between the results
obtained from both variations of FuzzEn and SlopEn (p>0.05). However, a statistically
significant difference was found between the results of FuzzEn and SlopEn metrics and
those of the other metrics (p<0.05).

Fusing both variations of FuzzEn

Fig. 4.3 shows the scatter plot and the histogram of AE for the fusion of both
variation of FuzzEn entropy. Interestingly, the utilization of just these two FuzzEn
metrics yielded notably favorable outcomes. The correlation was 0.85, indicating
a strong alignment between the estimated and the reference DoA index values.
Additionally, the MAE was low at 5.4. These findings underscore the efficacy of the
combined FuzzEn metrics in accurate DoA monitoring.

DoA mdexRef
D © 8
o o o

'S
o

n
o

0 10 20 30 40 20 40 60 80 100
AE DoA indexEst

Fig. 4.3. Scatter plots and histograms of AE between reference and estimated DoA
index values by employing fused FuzzEn.

4.1.4. Discussion

In this study, the performance of FuzzEn and SlopEn for DoA monitoring using
a single frontal EEG channel was investigated and compared against the conventional
entropy metrics commonly used in this field. The results indicated that both FuzzEn
and SlopEn outperformed the conventional metrics in terms of CC and MAE.

The superior performance of FuzzEn with Gau and Exp membership functions
compared to SampEn and AppEn can be attributed to several factors. Firstly,
FuzzEn’s utilization of membership functions enables a more nuanced representation
of uncertainty, capturing varying degrees of uncertainty in the data and offering a more
flexible model than the binary distinctions of SampEn and AppEn [221]. Secondly,
FuzzEn exhibits adaptability to data characteristics. Gau and Exp membership
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functions provide a broader range for modeling complex relationships in EEG signals,
accommodating variations not effectively captured by SampEn and AppEn measures
[217]. Lastly, combining FuzzEn with suitable membership functions enhances
robustness to noise in EEG signals, mitigating the impact of variations [222].

The advantage of SlopEn over metrics such as SampEn, AppEn, and SpEn lies
in its unique capability to capture and quantify the rate of changes or slope of a
signal. While other entropy metrics focus on various aspects of the signal complexity,
SlopEn specifically emphasizes variations in the signal’s slope. This characteristic
makes SlopEn particularly sensitive to abrupt changes or trends in the signal, offering
a distinctive perspective on signal dynamics. In the context of DoA monitoring using
EEQG, slope entropy may provide a more nuanced and detailed representation of the
underlying neural activity. Its proven lower sensitivity to data length compared to
SampEn and AppEn potentially enhances the accuracy anesthesia depth assessment,
making it a valuable metric in this application.

Although the results are promising, there are a few issues that should be
considered for the future work. First, it may be possible to improve the performance by
combining entropy metrics from different sub-bands, i.e., a feature selection method
can be applied to find the prominent features based on different entropy metrics from all
EEG sub-bands. Second, the examination of parameter tuning has yet to be conducted
within the scope of this chapter. Instead, we utilized parameters recommended in
existing literature. The performance of the employed entropy metrics may vary when
subjected to diverse parameter tuning approaches.

4.2. Parameter-Free Feature Set for DoA Monitoring

Despite the promising results reported in the literature, most of the developed
algorithms rely on the employment of multi-channel EEG signals analysis, which
introduces complexities in wearable instruments, data processing, and interpretation.
As an alternative, low-priced wearable EEG systems with a few channels can be utilized
for DoA monitoring.

As far as our knowledge extends, only a few studies have explored the viability
of such systems for DoA monitoring. Liu et al. [213] conducted a study on 24 subjects
who underwent general anesthesia, exploring the use of SampEn and multivariate
empirical mode decomposition (MEMD) for DoA monitoring. Nsugbe et al. [223]
introduced a method for DoA monitoring, which involves combining raw EEG signals
with handcrafted features, achieving a mean accuracy of 85% using the LDA across
ten subjects. Alsafy et al. [224] decomposed the EEG signal into four levels using
hierarchical dispersion entropy (HDE) and then extracted several features to trace
the DoA. Using a balanced dataset, the correlation coefficient of 0.96 between the
reference and the estimated DoA index values was reported. Schmierer et al. [225]
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used empirical wavelet transform (EWT) and SpEn to monitor the DoA and reported
an average correlation coefficient of 0.83 between the reference and the estimated DoA
index values. Ra et al. [215] used the SpEn of 10 EEG sub-bands for DoA monitoring
and reported the mean correlation coefficient of 0.80 between the reference and the
estimated DoA index values. Kalinichenko ef al. [216] proposed a combination of
AppEn, power spectrum density, and burst suppression ration for DoA monitoring
using a single EEG channel and reported the mean correlation of 0.78 between the
reference and the estimated DoA index values. Shi ez al. [226] proposed a deep residual
shrinkage network for the DoA monitoring using four EEG channels and reported the
correlation of 0.93 between the reference and the estimated DoA index values. Shin
et al. [202] proposed the phase lag entropy (PLE) as a feature for DoA monitoring.
By employing four EEG channels, the correlation of 0.83 between the reference and
the estimated DoA index values were reported. Chen er al. [195] investigated the EEG
variability analysis for DoA monitoring, which was based on extraction of the envelope
generated by local maxima of the original EEG signal. The best correlation of 0.72
between the reference and the estimated DoA index values was obtained by the median
frequency as the feature.

Nonetheless, utilizing only one database for developing and testing the DoA
monitoring algorithm poses a potential limitation for the aforementioned studies. This
is especially notable when employing nonlinear features like SampEn that require
parameter tuning before the computation [227]. Indeed, the ability to interchange tuned
features across different databases, which is crucial for the generality of the proposed
method, has been neglected [221,228].

Here, the objectives are, thus, twofold: (i) to introduce a parameter-free feature
set for the DoA monitoring using a single frontal EEG channel, eliminating the need
for human intervention in tuning parameters before computation, and (ii) to investigate
the performance of the proposed feature set on two different databases, ensuring the
generalizability of the proposed feature set when applied to data recorded with distinct
characteristics, e.g., varying sampling rates.

4.2.1. The proposed algorithm

In Fig. 4.4, the block diagram of the proposed algorithm for the DoA monitoring
is depicted. A detailed explanation of each step is given in the following subsections.

Pre-processing and sub-band decomposition

The pre-processing and sub-band decomposition procedures are similar to those
described in Section 4.1.1.
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Fig. 4.4. The block diagram of the proposed algorithm for DoA monitoring.

Feature extraction

Here, we utilize four distinct categories of features: entropy, band power and
frequency, fractal, and variation-based features.

Entropy-based features

Generally, entropy quantifies the irregularity of the EEG signal, offering a
quantitative assessment of the brain’s response to anesthesia [229]. Here, we use four
entropy measures called LeEn, ShEn, SpEn, and BubbEn, where SpEn is defined as
follows:

SpEn = — Z P, x log,(P,), (4.9)
o

with P, representing the probability of the signal’s power spectral density having a
value at the frequency bin f. The first three entropy metrics are parameter-free, and the
fourth one only requires the adjustment of the embedding dimension. Nevertheless,
it has been shown that the performance of BubbEn is not highly dependent on the
embedding dimension [111]; thus, we have used m = 8 as investigated in earlier
research [27].

Power and frequency band features

As the alternation of consciousness level is linked to different EEG sub- bands,
it can be expected that the features which represent the power and frequency of EEG
sub-bands be of discriminative power for the DoA monitoring [105]. Here, we use
power band (PB), mean power frequency (MPF), and median power frequency (MAPF)
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of each sub-band computed as follows:

1 N
PB =\ & Zle(n), (4.10)
M
MPF = —zi;;ﬁp", (4.11)
2o P
MAPF = f where {CDF (f) = 0.5}, 4.12)

where f; and P, are the frequency value and power spectrum at the frequency bin i, M
is the length of the frequency bin, and CDF is the cumulative distribution function of
the normalized power spectral density of the sub-band.

Fractal-based features

Based on the findings of studies focused on classifying consciousness levels, it
has been observed that EEG signals tend to exhibit higher complexity levels when
individuals are more alert [230, 231]. This leads to the expectation that complexity
measures can serve as robust indicators for DoA monitoring. Here, we utilize a pair of
complexity characteristics known as KFD and HE.

Variation-based features

The EEG pattern during anesthesia typically shows a more regular and
synchronized activity, resembling the patterns observed during deep sleep [232]. This
shift in EEG signals reflects the suppression of conscious awareness and the altered
neural dynamics induced by anesthetics. Thus, we expect the features that represent
such variations to be helpful for DoA monitoring. Here, we use two features called
sum of absolute differences (SAD) and log root of squared difference (LRSD) defined
as follows [82]:

SAD = Z IB(n) - B(n - 1), (4.13)

LRSD = log,, (\JNZ B(n-1))> ) (4.14)

In addition, two Hjorth measures, i.e., mobility (M,;) and complexity (C;), are also
computed as follows:

M, = ZE® (4.15)
JB(n)
o2, o2,
Cy = 2 /8w (4.16)

2 2
O/ OBy

95



where ¢ stands for the standard deviation of the EEG sub-band B(n), " and ” express
the first and second derivatives, respectively.

Feature selection

To select the prominent features, the NCA algorithm is used. Here, we used a
sub-set of Database I for finding the prominent features; then those selected features
are used to regress out the DoA index values for the rest of Database I and the whole
Database II. For more information regarding the NCA, refer to Section 3.2.1.

Regression

RF and SVM regression models are utilized to predict the DoA index values
following the selection of the prominent features, as they have previously demonstrated
promising results in DoA monitoring [213]. The fine-tuning of the model’s
hyperparameters is adjusted based on the Bayesian optimization method. To assess
the models’ performance, the MAE and CC were employed.

4.2.2. Data

As already stated, we employ two databases to evaluate the performance of
the proposed algorithm. It should be noted that a fraction of Database I is used for
selecting the prominent features, and Database II is only used for investigating the
interchangeability of the selected features.

Database I

Database I used in this section is the same database detailed in the previous
section. For more information, refer to Section 4.1.2.

Database 11

This database comprises EEG and BIS data from 30 patients undergoing a
scheduled surgical procedure at the University Hospital in Krakow, Poland. The study
included individuals classified as ASA physical status 1, 2, and 3, with an average age
of 48.7 + 13.3 years, height of 172.5 £8.6 centimetres, weight of 81.3 + 16.6 kilograms,
BMI (kg/m?): 27.2 + 4.9, and a gender distribution of 12 female and 18 male subjects.
The duration of the surgery was 74 + 28.2 minutes.

The intermittent BIS measurements were recorded at 5-second intervals utilizing
an EEG BIS Quatro Sensor (Aspect Medical Systems, Newton, MA, US). EEG data
acquisition was facilitated through a 64-channel ActiveTwo amplifier system (BioSemi,
Amsterdam, NL), with a sampling rate set at 1024 Hz. It is imperative to underscore
that, although the recordings were made with a 64-channel EEG system, the present
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study exclusively focused on the Fpl EEG channel to enhance comparability with
low-cost portable EEG headbands, akin to the NeuroSky product [16]. It is noteworthy
that the analysis was limited to 23 subjects, as the values of one BIS measurement
were unavailable, and the EEG signals associated with the Fpl channel of other 6
participants exhibited significant noise.

Prior to data recording, each subject signed the informed consent form. The
study’s execution adhered to the principles outlined in the Declaration of Helsinki and
secured approval from the local ethics committee, namely, the Bioethical Committee
at Jagiellonian University Medical College in Krakow, Poland, under the ethics code
1072.6120.60.2019.

4.2.3. Results

This section presents the results obtained from both databases based on random
sampling and leave-one-subject-out cross-validation. Regarding the random sampling,
the prominent features are divided into two subsets: training-validation (70%) and
testing (30%) randomly. To enhance result robustness, the training-validation process
adheres to a 10-fold CV approach, whereas the testing is exclusively conducted on the
unseen subset.

Prominent features

To identify the prominent features, we conducted a selection process on the
entire recordings of six subjects from Database I. From each sub-band, 13 features
were extracted. Subsequently, the NCA was employed to highlight the key features.
This was achieved by maximizing an objective function, which evaluated the mean
leave-one-out regression across all 65 features extracted from the six recordings above.
Here, features receiving a weight exceeding 0.5 were deemed prominent, as depicted
in Fig. 4.5. 34 features were identified with weights surpassing 0.5. Notably, MPF,
MAPF, and M, of all sub-bands are amongst the selected features. It is also worth
mentioning that these recordings have been excluded from the final regression results.

Regression based on random sampling

After excluding samples with unknown DoA index values, 25198 and 19399 5s
EEG signal segments of Databases I and II were used for the analysis. The entire
process was repeated ten times to ensure the robustness of the results. Table 4.3
presents the mean and standard deviation of the MAE and CC between the reference
and the estimated DoA index values. Although the RF shows slightly better
performance, based on the conducted Mann-Whitney U test, no significant difference
was found between the obtained results using either model (p>0.05).
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Fig. 4.5. The selected features (green) by the NCA, categorized based on each
sub-band.

Table 4.3. The MAE and CC obtained for the random sampling approach using both
Databases.

Regression model MAE (u+0) CC(u +o0)

Database I Random forest 53+0.5 0.86 + 0.03
SVM 59+0.7 0.81 + 0.02
Database II Random forest 7.1+0.8 0.85 + 0.02
SVM 73+ 1.1 0.83 + 0.04

Regression based on LOSOCV

Comparing the results for RF and SVM in Databases I and II (Table 4.4), we
observe that the RF generally exhibits higher CC values across subjects, suggesting
a stronger linear relationship between the estimated and the reference values.
Additionally, the RF tends to have lower MAE values, indicating a better estimation
accuracy than SVM. This trend is consistent across most subjects. Overall, the RF
model achieved a higher mean CC for Database I (0.80 vs. 0.65) and Database II (0.79
vs. 0.60) and a lower mean MAE for Database I (7.1 vs. 9.3) and Database II (9.01 vs.
12.2).

Table 4.4. The MAE and CC obtained for the LOSOCYV approach using both
Databases.

Regression model MAE (z +0) CC(u + o)

Database I Random forest 71+14 0.80 + 0.05
SVM 93+19 0.65 + 0.09
Database II Random forest 9.0+ 1.6 0.79 + 0.07
SVM 12.2 + 2.0 0.60 + 0.13

Fig. 4.6 illustrates an instance of the reference DoA index values alongside the
estimated ones by both models using Database II. The observation reveals that the RF
model adeptly captures the trajectory of the reference DoA index values. Indeed, the
RF model yielded a more accurate DoA index estimation than the SVM, demonstrating
a more robust correlation (0.86 vs. 0.68).
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Fig. 4.6. An example on how RF (dark blue) (a) and SVM (purple) (b) follows the
trend of references DoA index values (light gray) for one subject from Database II.
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Comparison with state-of-the-art

Table 4.5 compares the proposed algorithm and state-of-the-art approaches,
focusing on several aspects, including the number of channels, subjects, databases, the
training-testing approach, and the average regression metrics. It is worth noting that
our analysis exclusively included studies that utilized EEG data from the frontal cortex
with a few channels.

Table 4.5. The comparison between the proposed and state-of-the-art algorithms. LR
and LOSOCY represent the linear regression and leave-one-subject-out
cross-validation, respectively.

Study No. databases No. subjects No. channels EEG decomposition — Features Regressor Training-testing approach CC  MAE
[195] 1 56 1 EEG variability MAPF N.A. LOSOCV 0.74 N.A.
[202] 1 34 4 N.A. PLE N.A. LOSOCV 0.84 N.A.
[207] 1 176 2 N.A. Raw data CNN Random sampling 0.80 6.03
[213] 1 24 1 MEMD SampEn SVM LOSOCV 090 5.22
[224] 1 37 1 HDE Entropy LR Random sampling 096 N.A.
[225] 1 23 2 EWT SpEn SVM LOSOCV 083 N.A.
[215] 1 37 1 Sub-bands SpEn LR LOSOCV 080 N.A.
[216] 1 54 1 N.A. A%’fn LR LOSOCV 0.78 N.A.
BP
SampEn
[226] 1 18 4 N.A. AppEn DRSN Random sampling 0.93 N.A.
BP
SEF
Entro, Random sampling 0.86 5.3
Database 1 u ! Fractal Losocy 080 71
Ours Sub-bands RF .
Database TT 23 1 Power Random sampling 085 7.1
Variation LOSOCV 079 9.0

Compared to [195], our feature set yields a higher mean CC for the LOSOCV
approach. Although [202] achieved a slightly higher mean CC with LOSOCY, their
results were based on the use of four EEG channels, whereas ours are based on
a single EEG channel, potentially reducing wearable complexity. Our proposed
algorithm shows a higher mean CC for random sampling analysis compared to
[207], which utilized two EEG channels. Additionally, our method exhibits lower
computational complexity than [213], as we employ simple linear filters for extracting
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EEG sub-bands instead of MEMD. While [224] achieved a higher mean CC for
random sampling, it is worth noting that they used a balanced dataset. In real-life
scenarios, as considered in our study, imbalanced data among DoA index values are
typical. Although [225] achieved a slightly higher mean CC for leave-one-subject-out
cross-validation, our algorithm stands out by using a single EEG channel, reducing
computation and wearable complexity. Regarding [215], our results were comparable,
but we demonstrated more consistency by employing two different databases in our
evaluation. Compared to [216], we achieved a higher mean CC for LOSOCV.
Regarding [226], although their reported mean CC was higher than ours, we stand
out by employing only one EEG channel instead of four.

4.2.4. Discussion

Here, we aimed to propose a parameter-free feature set for DoA monitoring using
a single frontal EEG channel, specifically tailored to address the pragmatic constraints
encountered in existing research. On the one hand, a wide range of methods presented
in the literature were designed using multi-channel EEG recordings, which could
introduce inconvenience during surgery as it necessitates wearing multiple accessories
connected to various regions of the brain. On the contrary, employing a single frontal
EEG channel is more convenient since it involves placing just one electrode on the
hairless forehead area, thus, potentially reducing susceptibility to noise.

On the other hand, studies that focused on DoA monitoring using a single
frontal EEG channel typically utilized only one database to develop and assess
the performance of their proposed algorithms. Indisputably, the interchangeability
of algorithms presented across different databases, a crucial aspect of real-world
applications, has been undermined in the literature. This issue becomes particularly
notable when using nonlinear features like approximate or sample entropy, as they
require parameter tuning before computation, i.e., optimal performance of these
measures is sensitive to the initial calibration [221, 228]. However, our algorithm
introduced a feature set that does not require parameter tuning. As a result, there should
be less concern about the performance of parameters with other databases, ensuring the
feature set’s interchangeability and applicability across different databases.

Considering the critical importance of feature set interchangeability for DoA
monitoring across different databases in real-world applications, our algorithm
involved utilizing two distinct databases. In this process, a portion of Database I was
employed to select the prominent features, while the rest of Database I and the whole
Database II were exclusively used to test the selected features from the previous stage.
When comparing the results obtained for the random sampling approach using the RF
regressor between Database I and II, the former achieved only 0.01 higher mean CC
and 1.8 lower MAE. Similarly, both databases demonstrated comparable results for the
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one-subject-leave-out cross-validation with the RF regressor, as the former only gained
0.01 higher CC and 1.91 lower MAE. These outcomes suggest that the proposed feature
set is interchangeable across the two different databases.

Furthermore, based on the best of our knowledge of the current studies in the
field, a significant portion of the research that estimated DoA index values from
a single EEG channel primarily focused on investigating either random sampling
or leave-one-subject-out cross-validation, overlooking the importance of consistent
performance for both scenarios [121]. However, in contrast, our study emphasizes
the robustness of the proposed feature set by achieving comparable results for both
scenarios. Specifically, a comparison between Table 4.3 and Table 4.4 demonstrates
comparable mean CC values for Database 1 (0.86 and 0.80) and Database II (0.85
and 0.79), as well as comparable mean MAE values for Database I (5.3 and 7.1) and
Database II (7.1 and 9.01) obtained using the RF model for both scenarios. This also
indicates the robustness and consistency of our proposed approach across different
databases and evaluation scenarios. Nonetheless, it is essential to acknowledge that
the greater power of interchangeability of the proposed feature set compared to other
methods cannot be conclusively deduced as no such test has been conducted.

Similar to other research on DoA monitoring, the proposed algorithm has a few
limitations that one should take into consideration in future work. Firstly, although the
regression results are promising, further investigation on a more extensive database
might be necessary for the assessment of the proposed feature set. In particular,
the investigation of the performance of the proposed feature set on specific drugs
[233] and subjects of different ages [234] should be beneficial. Secondly, exploring
more advanced classifiers, such as CNN, for regression could be beneficial, but
their implementation requires substantial computational resources and specialized
knowledge. Thirdly, for Database II, we only considered the Fpl EEG channel to
test the performance of the feature set. It is possible that the proposed feature set
would perform differently on other frontal EEG channels. However, it is essential
to highlight that we aimed to propose a method suitable for available consumer
frontal EEG headsets; hence, we specifically focused on the Fp1l channel. Fourthly,
different feature selection methods could yield varying results. Although we found
the NCA approach convenient due to its simplicity and independence from parameter
tuning, exploring other feature selection methods might be worthwhile. Lastly, our
reference for DoA was solely the BIS, which is acknowledged to possess several
limitations, such as sensitivity to certain anesthetics [235,236], unreliability in cases
of hypothermia or neurological impairment, etc. Consequently, it remains plausible
that the proposed feature set might exhibit varying performance when aligned with
alternative DoA measurement systems as the reference. Notably, prior studies have
highlighted disparities in DoA index values across diverse measurement systems [237].
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4.3. Conclusions of the Chapter

1. In evaluating individual entropy metrics for DoA monitoring using a single
frontal EEG channel, both FuzzEn and SlopEn demonstrated superior performance
compared to the conventional SampEn and AppEn with a higher CC of 0.77 and 0.74,
respectively, compared to 0.63 and 0.61 for SampEn and AppEn. Additionally, they
showed lower MAE, with values of 6.4 and 6.8 compared to 8.7 and 8.9.

2. The combination of both variations of FuzzEn with Gau and Exp membership
functions appears to create synergy for the estimation of DoA index values, resulting
in a higher CC of 0.85 and a lower MAE of 5.4 between the reference and the estimated
DoA index values.

3. The proposed parameter-free feature set for DoA monitoring demonstrated
robustness, achieving comparable CC values of 0.86 and 0.85, and MAE values of 5.3
and 7.1 between the reference and the estimated DoA index values for Databases I and
II, respectively, despite their different recording characteristics. Moreover, it shows
comparable regression results to current state-of-the-art methods, while distinguishing
itself through its simplicity by eliminating the necessity for prior calibration of
parameters.
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5. CONCLUSIONS

1. The proposed SWT-kurtosis algorithm effectively addressed the removal
of electrical shift-linear trend artifacts in a short segment of a single EEG signal.
It demonstrated superior performance compared to AWICA and EAWICA, with a
higher CC of 0.92 versus 0.58 and 0.67, and a NRMSE of 5.4 versus 12.2 and
11.5, respectively, between the artifact-free and filtered EEG signals. Similarly, the
VME-DWT proved to be an effective algorithm for detecting and filtering eye blink
artifacts in a short segment of a single frontal EEG channel. It outperformed AVMD
and DWT, showing a higher CC of 0.92 versus 0.83 and 0.58, and a lower RRMSE
of 0.42 versus 0.59 and 0.87. Both algorithms hold significant promise for artifact
removal in brain-computer interface and clinical applications, as they do not require
the initial calibration or reference artifacts.

2. The effectiveness and versatility of a nonlinear feature set derived from a
single frontal EEG channel were demonstrated as a potential solution to address the
limitations of the conventional RBP analysis for discriminating wakefulness from
Sleep Stage I. Our findings indicate that the proposed nonlinear features, which are
based on fractal and entropy analysis of EEG sub-bands, outperform the traditional
RBP analysis, showing a higher mean sensitivity to Sleep Stage I across multiple
databases: Sleep Telemetry (82.6% vs. 71.8%), DREAMS (87.6% vs. 71.8%), DCSM
(91.0% vs. 74.2%), and MESA (82.0% vs. 76.1%). Considering the interchangeability
of the proposed feature set, proven by using four databases recorded with different
characteristics, it can be concluded that it has the potential to be used for estimating
the sleep onset latency in clinical applications.

3. New insights into the significance of eye blinks in EEG-based driver fatigue
detection were provided, emphasizing their dual role as both informative signals
and potential artifacts. The comparison between the synergy of eye blink and EEG
RBP features, before and after filtering, revealed a notable improvement in the mean
accuracy of driver fatigue detection (71.2% vs. 78.1%). This underscores the dual role
of eye blinks in prefrontal EEG for driver fatigue detection. Building on these findings,
adriver fatigue detection algorithm was proposed, based on simultaneous EEG and eye
blink analysis using an Fp1 EEG channel. The algorithm’s performance was evaluated
using two databases with different characteristics. The results obtained from both
databases using the AdaBoost classifier, in terms of accuracy (88.4% vs. 86.8%),
demonstrated the robustness of the proposed algorithm for detecting driver fatigue.
Given the availability of commercial single prefrontal channel EEG headbands, this
algorithm shows promise for real-world applications in detecting driver fatigue.

4. A parameter-free feature set for DoA monitoring using a single frontal EEG
channel was presented, with its performance evaluated across two databases with
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distinct characteristics. The proposed feature set demonstrated robustness, achieving
comparable CC values of 0.86 and 0.85, and MAE values of 5.3 and 7.1 between the
reference and the estimated DoA index values for Databases I and II, respectively.
While parameter-free features exhibit a degree of universality across different EEG
databases for DoA monitoring, the employment of specific nonlinear features can
enhance the performance. Notably, precise adjustment of certain nonlinear features,
such as FuzzEn combined with Exp and Gau variants, produced results comparable to
the parameter-free features for estimating the DoA index values for Database I, despite
their lower dimensionality. This highlights the importance of optimizing nonlinear
feature parameters to maximize the performance in EEG-based DoA monitoring.
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6. SANTRAUKA

6.1. JVADAS

Tyrimo aktualumas

Sgmoné —tai busena, kai Zmogus suvokia ir gali patirti pojucius, mintis ir aplinka.
Ji apima subjektyvius Zmogaus patirties aspektus, jskaitant suvokimg, savimong ir
gebéjimg apdoroti informacijg [1]. Tai yra daugialypé savoka, apimanti biisenas,
kurioms budingas reagavimas j iSorinius dirgiklius ir kognityvinis aktyvumas, iki
pakitusiy buseny, per kurias individai gali patirti sumazéjusia kognityvine funkcija
[2]. Zmogui pereinant i§ budrumo j pakitusig samonés biisena, pavyzdZiui, nuovargj,
miega ir anestezijg, samoné patiria dinaminius pokycius, susijusius su skirtingais nervy
sistemos modeliais ir subjektyvia patirtimi [3]. D¢l Sios prieZasties analizuoti samonés
lygji yra ypa¢ svarbu tokiomis aplinkybémis, kaip miego vertinimas, nuovargio
nustatymas ir anestezijos gylio stebéjimas.

Miego vertinimo srityje miego kokybé yra glaudZiai susijusi su samonés lygiu,
patiriamu poilsio metu ir suteikia jZvalgy apie asmens jauninamojo poilsio gylj ir
pobudj [4]. Neseniai atlikto tyrimo duomenimis, beveik 25% Europos Sajungos
gyventojy kencia nuo vienokiy ar kitokiy miego sutrikimo formy, kurios neigiamai
veikia fizing ir psiching sveikata [5]. Su tuo susijusios gydymo iSlaidos ir asmeny
veiklos apribojimai dél prastos miego kokybés dar labiau jrodo, kad svarbu spresti su
miego samone susijusius klausimus.

Nuovargio jvertinimas yra dar viena svarbi pritaikymo sritis, kai samonés
analizé tampa nepakei¢iama. Nuovargis labai sutrikdo kognityvines funkcijas ir
budrumg [6]. Apskaiciuota, kad pasaulyje 14-20% eismo jvykiy jvyksta dél vairuotojy
nuovargio [7]. Jungtinése Amerikos Valstijose AAA Eismo saugumo fondo atlikto
tyrimo duomenimis, vien tik Sioje Salyje dél vairuotojy nuovargio jvyksta daugiau
kaip 328 000 eismo jvykiy per metus. IS jy 109 000 baigiasi suZalojimais, o apie
6 400 — mirtimi [8]. Samonés lygio analizé palengvina ankstyva su nuovargiu
susijusiy poky¢iy nustatyma, leidZiantj laiku jsikisti, kad buty i§vengta nelaimingy
atsitikimy. Nagrinédami sudétinga samonés ir nuovargio saveika, mokslininkai gali
kurti paZangias vairuotojy stebésenos sistemas, didinancias keliy eismo sauguma.

Medicinos srityje anestezijos gylio stebéjimas yra gyvybiskai svarbus, siekiant
uZtikrinti pacienty sauguma per chirurgines procediiras. Skirtingy samonés lygiy
analizé padeda anesteziologams palaikyti tinkamiausia pusiausvyra tarp pacienty be
samonés biiklés ir galimo 3alutinio poveikio maZinimo. Si subtili pusiausvyra padeda
ne tik s€kmingai atlikti chirurgines operacijas, bet ir iSvengti komplikacijy, susijusiy
su nepakankama ar pernelyg gilia anestezija [9, 10]. Be to, nuolatinis sgmonés lygio
stebéjimas anestezijos metu gali suteikti ekonominés naudos, uzkertant kelig anestetiky
Svaistymui, kuris, kaip nustatyta, labai prisideda prie bendry anestezijos procediry

105



sgnaudy [11]. Taigi, tokia stebésena naudinga pacientui ir skatina veiksmingai naudoti
sveikatos prieZiliros sistemos iSteklius.

Smegenys, pasiZymincios sudétingais neuroniniais tinklais ir sudétingomis
sgveikomis, yra pagrindinis sgmoningos patirties generavimo centras [12].
Neuromoksliniai jrodymai nuosekliai susieja tam tikra smegeny veikla su samoningais
reiSkiniais, iSrySkindami esminj smegeny vaidmenj. Tyrimai, apimantys neurologinius
vaizdus ir nervy stimuliacijg, patvirtina, kad smegenys yra biologinis samonés
substratas [13]. Elektroencefalografija (EEG) yra labai svarbi analizuojant samonés
lygius, nes leidZia realiuoju laiku gauti jZvalgas apie jvairias buisenas [14]. Dél
neinvazinio pobudZio, perkeliamumo ir rentabilumo EEG yra nepakei¢iama tiriant
samonés dinamikg jvairiose srityse — nuo medicininiy iki kognityviniy tyrimy.

EEG elektrodai yra strategiSkai iSdéstyti ant galvos odos pagal standartines
sistemas, tokias kaip 10-20 ir 10-10 sistemos, kurios uZtikrina nuoseklius ir
pakartojamus matavimus. Sie elektrodai, pavadinti pagal jy pagrindines smegeny
skiltis, apima svarbias sritis, jskaitant frontaling (F), temporaling (T), parietaling (P),
okipitaling (O) ir centring (C) sritis. Padétis nustatoma pagal sistemin¢ nomenklatiira:
nelyginiai skaiciai (1, 3, 5, 7) Zymi vietas kairiajame pusrutulyje, o lyginiai skaiciai
(2,4, 6, 8) — pozicijas deSinéje. Elektrodai, esantys iSilgai galvos odos vidurio linijos,
paZyméti raide ,,z*“ (nulis), pvz., Fz (priekiné vidurio linija), Cz (centriné vidurio linija)
ir Pz (parietaliné vidurio linija) (6.1 pav) [15].

6.1 pav. EEG elektrody iSdéstymas pagal 10—10 sistemg, adaptuota i$ [15]

Dabartiniy tyrimy spragos ir galimos sprendimo strategijos

Nors literatiroje pateikiami daug Zzadantys rezultatai tiriant samonés lygj
naudojant EEG, nemaza Siy tyrimy dalis sutelkta j daugiakanaliy polisomnografijos
jraSy analize. Toks metodas apsunkina dévimyjy prietaisy naudojima ir kelia sunkumy
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atliekant ilgalaikius jraSus. Be to, tokia konfigtracija ne tik riboja EEG tyrimy
iSpleciamuma, bet ir trukdo prakti$kai taikyti realaus gyvenimo scenarijuose. D¢l
sudétingo polisomnografijos sistemos montaZo ir kvalifikuoto specialisto poreikio jos
platesnis naudojimas uZ kontroliuojamos moksliniy arba klinikiniy tyrimy aplinkos
riby néra praktiSkas. Kad EEG pagristi samonés lygio tyrimai biity prasmingai
taikomi kasdieniame gyvenime, biitina iSnagrinéti ir naudoti paprastesne bei patogesne
konfigiiracija, kuri palengvinty sklandZig integracija j Zmoniy kasdienybe.

Viena i§ galimy priemoniy iSspresti Sig problema — naudoti vartotojo lygio
(angl. consumer grade) dévimas vieno frontalinio kanalo EEG galvajuostes. Sios
sistemos turi daug privalumy: yra prieinamos, patogios ir praktiSkai pritaikomos.
Kadangi Siuos prietaisus yra lengva ir patogu naudoti, jie yra supaprastinta, taciau
veiksminga smegeny veiklos stebésenos priemoné, todél EEG technologija tampa
prieinamesné platesnei gyventojy grupei. Kadangi yra jperkami, jie ypa¢ patrauklus,
gali buti placiai naudojami ir atveria galimybes asmenims stebéti savo kognityvines
biisenas namuose arba jvairiose kasdienio gyvenimo aplinkybése. Be to, tai, kad
vieno frontalinio kanalo konstrukcija yra paprasta, leidZia sumaZinti ne tik bendra
Sios priezasties naudotojams, neturintiems specialaus pasirengimo, nesunku prietaisg
naudoti. Be to, jraSinéti EEG nuo frontalinés smegeny skilties gali biiti patogiau, nes
tai neplaukuota sritis, t. y. geresnis elektrodo kontaktas, patogiau naudotojui, nes jis
gali naudoti prietaisa kasdienéje veikloje. Tokios sistemos pavyzdys yra ,,NeuroSky*
MindWave ausinés, kurios sitlo patogia sasaja Svietimo ir tyrimy tikslais, leidZiancia
tirti smegeny aktyvumga jvairiose aplinkose (6.2 pav.) [16,17].
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6.2 pav. , NeuroSky* MindWave ausiniy elektrody i§déstymas pagal 10-20 tarptauting
sistema, adaptuota i§ [16,17]

Moksliné-technologiné problema

Nepaisant anksCiau minéty dévimy EEG sistemy pranaSumy, ribota vieno
priekinio kanalo erdviné apréptis gali sumaZinti uZregistruoty smegeny signaly
detalumg ir specifiSkuma, o tai gali pakenkti neuroninés veiklos informacijos,
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susijusios su skirtingais sgmonés lygiais, iSsamumui.
Tyrimo klausimas: kaip signaly analizés algoritmais kompensuoti smegeny

elektrinés veiklos stebésenos erdvinés aprépties sumaZinimg, siekiant kompromiso
tarp sagmonés lygio stebésenos patikimumo ir prietaiso patogumo naudotojui?

Darbo hipotezé: Vieno priekinio EEG kanalo skaidymas j daZniy juostas
ir netiesinés analizés taikymas gali kompensuoti erdvinés aprépties apribojima,
uZfiksuojant skirtingg sudétingg dinamika, susijusig su samonés lygiy pokyciais.

Tyrimo objektas

Siame tyrime pagrindinis démesys skiriamas signaly apdorojimo algoritmy,
skirty samonés lygiui charakterizuoti atliekant miego vertinima, nuovargio atpaZinimg
ir anestezijos lygio stebéseng naudojant vieng priekinj EEG kanala, kiirimui ir tyrimui.

Tyrimo tikslas
Sios daktaro disertacijos tikslas — pasifilyti sgmonés lygio stebéjimo metodus,
naudojant nebrangias dévimas EEG sistemas aktualiems realaus gyvenimo poreikiams.

Tyrimo uzdaviniai

1. Sukurti algoritmy, galin¢iy veiksmingai sumaZinti elektrinius triukSmus,
trukdZius, bazinés linijos tendencijg ir akiy mirk¢iojimo artefaktus, kurie paprastai
atsiranda EEG duomenyse, jraSytuose nebrangiomis nesiojamosiomis sistemomis;

2. Pasiilyti tinkamg poZymiy rinkinj, pagal kurj bty galima atpaZinti ir atskirti
budrumg nuo I miego stadijos, naudojant vieng priekinj EEG kanala, taip sudarant
salygas miego pradZios vélavimui jvertinti, kuris yra labai svarbus, norint pamatuoti
miego kokybe;

3. Sukurti algoritmy, specialiai pritaikyty vairuotojy nuovargiui atpazinti,
naudojant dabartines komercines neSiojamasias EEG sistemas;

4. Sukurti anestezijos gylio jvertinimo ir stebésenos algoritma, kurio
veikimas buty pagristas minimaliu EEG jéjimo kanaly skai¢iumi, galimu registruoti
nebrangiomis, komercinémis, vartotojo lygio sistemomis.

Mokslinis naujumas

Pirma, Sioje daktaro disertacijoje sitlomi du nauji nesudétingi algoritmai, skirti
bendriesiems artefaktams trumpuose vieno EEG kanalo jraSy segmentuose pasalinti.
Sie algoritmai sukurti siekiant sumaZinti dévimy EEG sistemy artefaktus trumpame
duomeny segmente, o tai labai svarbu norint uZtikrinti, kad duomeny analizé bty
patikima.

Antra, Sioje disertacijoje pateikiamas naujas pozitris j akiy mirkciojimo
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artefaktus frontaliniuose EEG signaluose vairuotojo nuovargiui nustatyti. Tai pirmasis
tyrimas, jrodantis, kad akiy mirkciojimo artefaktai gali turéti tiek teigiama, tiek
neigiamga poveikj EEG signalams, norint aptikti vairuotojo nuovargj.

Galiausiai Siame darbe nagrinéjamas netiesinés EEG daZniniy komponenciy
analizés potencialas, klasifikuojant skirtingus sgmonés lygius, vertinant miega,
aptinkant vairuotojo nuovargj ir stebint anestezijos gylj, remiantis komerciniy dévimy
EEG sistemy kanaly konfigiiracijomis.

Skirtingai nei dauguma tyrimy, kuriuose algoritmams kurti ir testuoti buvo
naudojama tik viena duomeny bazé, Sioje disertacijoje abiem etapams naudojamos
kelios. Tai ypac svarbu, kai naudojami netiesiniai poZymiai, pavyzdZiui, imties
entropija, kurios parametrus reikia derinti. Siekiant uZtikrinti sitilomo metodo
universalumg, bitina spresti esminj klausimg dél suderinty netiesiniy poZymiy
pakei¢iamumo jvairiose duomeny bazése, o i §j aspekta daZnai neatsiZvelgiama taikant
dabartinius paZangiausius metodus.

Praktiné reikSmé

Sio darbo rezultatai turi tokig prakting reik$me:

1. Sitlomi artefakty maZinimo algoritmai gali palengvinti duomeny kokybe¢
dévimiems, EEG pagrjstiems algoritmams, kurie analizuoja sgmonés lygj kasdienéje
veikloje. Be to, sitlomi algoritmai gali buti naudojami EEG signaly kokybei gerinti
kitose srityse;

2. Sitlomas poZymiy rinkinys, skirtas atpaZinti ir atskirti budruma nuo I miego
stadijos, gali biiti naudojamas miego pradZios vélavimo laikotarpiui jvertinti, o tai labai
svarbus rodiklis, vertinant miego kokybe ir nemigos nustatyma;

3. Siulomi algoritmai, aptinkantys vairuotojo nuovargj, leidzZia iSgauti akiy
mirk¢iojimo funkcijas, kartu paSalinant jas i§ EEG signaly. Sie algoritmai yra
suderinami tiek su vieno, tiek su keliy kanaly EEG sistemomis ir gali buti naudojami
jvairiose EEG programose, ypac tose, kuriose tuo paciu metu reikia analizuoti
smegeny veiklg ir akiy mirk¢iojima;

4. Sialomas poZymiy rinkinys be parametry, skirtas anestezijos gyliui stebéti,
yra efektyvus bei suteikia galimybe lengvai pakartoti eksperimenta ir pagerinti naSuma,
jtraukiant papildomy funkcijy.

Rezultaty aprobavimas

Daktaro disertacija  grindZiama septyniais straipsniais,  publikuotais
tarptautiniuose mokslo Zurnaluose, kuriy citavimo indeksas nurodytas Clarivate
Analytics Web of Science duomeny bazéje, o iS viso rezultatai paskelbti deSimtyje
moksliniy straipsniy. Svarbiausi rezultatai pristatyti SeSiose tarptautinése
konferencijose.

109



2021 ir 2022 m. buvo gautos Lietuvos mokslo tarybos skiriamos skatinamosios
stipendijos akademiniams tyrimams. 2021, 2022 ir 2023 m. gauti aktyviausio Elektros
ir elektronikos inZinerijos mokslo krypties doktoranto apdovanojimai, kuriuos skyré
Kauno technologijos universitetas. 2021 ir 2022 m. buvo gautos trys skatinamosios
stipendijos uZ aukStos kokybés publikacijas, kurias skyré Kauno technologijos
universitetas.

2023 m. gauta viena skatinamoji stipendija uZ akademinius tyrimus
pasauliniame konkurse, kurig skyr¢ IEEE Signaly apdorojimo draugija (IEEE
Signal Processing Society), ir trys stipendijos: (i) moksliniam vizitui j Tokijo
Zemés ukio ir technologijy universiteta, kurig skyré Lietuvos mokslo taryba, (ii)
dalyvauti Kompiuteriniy neuromoksly akademijos vasaros mokykloje, kurig skyré
Lenkijos nacionaliné akademiniy mainy agentiira, ir (iii) dalyvauti 18-ajame IEEE
tarptautiniame medicinos matavimy ir taikymy simpoziume, kurig skyré IEEE
Instrumenty ir matavimy draugija (Instrumentation and Measurement Society).

2021 ir 2022 m. du publikuotus $ios disertacijos straipsnius IEEE , Transactions
on Neural Systems and Rehabilitation Engineering® ir IEEE ,,Journal of Biomedical
Health and Informatics* Zurnaly redakcinés kolegijos pripaZino teminiais (angl.
Featured Articles).

Ginti pateikti teiginiai

1. Kurtoz¢ ir asimetrija tarnauja kaip labai efektyvis pozZymiai, leidZiantys
aptikti elektriniy ir tiesiniy poslinky tendencijg bei akiy mirk¢iojimo artefaktus
trumpame vieno EEG kanalo segmente;

2. Vieno frontalinio EEG kanalo netiesiniai poZymiai pasirodé patikimesni
nei santykinés juostos galios analizé. Pasiiilyti netiesiniai poZymiai leidZia atskirti
budrumo ir I miego stadija, kuriy laikinés ir spektrinés charakteristikos yra panasios;

3. Akiy mirksniai prefrontaliniuose EEG kanaluose turi dvejopa prasme. Gali
tarnauti ir kaip vertingos informacijos Saltinis, ir kaip artefaktas nustatant vairuotojo
nuovargj;

4. Pasiulytas frontalinio EEG signalo poZymiy rinkinys skirtas anestezijos
lygiui stebéti. PoZymiy rinkinys nereikalauja parametry optimizavimo, gali biti
igyvendintas nebrangiomis EEG registravimo ir skai¢iavimo priemonémis. Todél
galéty buti naudingas besivystanciy Saliy ligoniniy operacinése.
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6.2. EEG ARTEFAKTU PASALINIMAS

6.2.1. ELEKTRINIAI POSLINKIAI IR LINIJINES TENDENCIJOS

EEG signaluose, jraSytuose neSiojamosiomis sistemomis, daZniau pasitaiko
nefiziologiniy artefakty deél tiriamyjy judéjimo ir kasdienés veiklos [29]. Nors
pagrindiniai tiesiniai filtrai gali suSvelninti daugelj artefakty, paZangesniy metody
vis tiek reikia tiems, kurie apima visas EEG daZniy juostas [30], pavyzdZiui,
elektrinio poslinkio ir linijinés tendencijos artefaktams (ESLT). Jie gali atsirasti
del elektrody poslinkiy arba dél to, kad sumaZéja laikinasis odos ir elektrody
kontaktas. Esami ESLT Salinimo algoritmai yra skirti apdoroti neprisijungus
arba daugiakanaliam apdorojimui, todél néra uZtektinai veiksmingi trumpiems
segmentams, esantiems viename ar kelivose EEG kanaluose, kurie budingi
nesiojamosioms sistemoms. Cia siiilomas stacionarigja bangeliy transformacija (SWT)
pagrijstas ESLT eliminavimo sprendimas, taip pat sprendZiama problema, susijusi
su tinkamiausiy dekompozicijos lygiy parinkimu skirtingu daZniu parenkamiems
signalams [30, 35-37]. Idiegta kurtozés principu pagrjsta strategija, leidZianti
savaime regulivoti SWT dekompozicijos lygj, taip sumaZinant skai¢iavimo apkrova
ir pagreitinant filtravimg. Tai, ar silomas algoritmas jgyvendinamas, patvirtinama
jvairiais atrankos daZniais ir palyginama su automatine bangeliy nepriklausomy
komponenty analize (AWICA) [31] ir patobulintais AWICA (EAWICA) [34]
algoritmais.

Sialoma SWT kurtozé ESLT pasalinti

SWT isskaido signalg j Zemo ir aukSto daZnio juostas, aproksimacijos a(n) ir
detalés d(n) komponentus atitinkamai per aukSto pralaidumo ir Zemo pralaidumo
filtrus. SWT reikéjo nustatyti du parametrus: bangeliy pagrindo funkcijg ir
dekompozicijos lygj. dbl pagrindo funkcija pasirinkta dél jos panaSumo j ESLT
artefaktus. Dekompozicijos lygio nustatymas yra svarbus kuriant automatinj SWT
pagrista algoritmg. Kurtozé naudojama kaip kriterijus automatiskai sustabdyti SWT,
kai jis pasiekia artefakty komponentus, o maZesnés nei trys reikSmés rodo ESLT
paplitima dél jy platikurtinio pasiskirstymo EEG signaluose [33, 45]. Per SWT
dekompozicijg aproksimacijos komponenty kurtozé apskaiCiuojama kas du lygius,
o absoliutus skirtumas naudojamas sprendZiant, ar testi, ar sustabdyti procesg. Jis
sustoja, jei skirtumas virsija 0,1, o tai rodo, kad dekompozicija yra tinkama artefaktams
filtruoti. Paskutiné aproksimacijos komponenté pasalinama, siekiant eliminuoti Zemo
daznio artefakty komponentus, o detaliy komponenty triukSmas slopinamas naudojant
universalyjj slenkstj [37]. Tada detaliy komponentai su nuslopintu triuk§mu naudojami
atkuriant filtruota EEG signalg per atvirkStinj SWT.
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Eksperimenty rezultatai ir aptarimas

Cia buvo naudojami tiek pusiau imituoti, tiek tikri uZter§ti EEG duomenys.
Naudojant pusiau imituotus duomenis, taip pat buvo galima jvertinti filtravimo
veiksmingumg kiekybiSkai.  Lyginant pusiau imituotus duomenis su AWICA
ir EAWICA, pasitlytas SWT kurtozés algoritmas pasiZymi didesniu koreliacijos
koeficiento vidurkiu (0,92, palyginti su 0,58, 0,67), didZiausio signalo ir triuk§Smo
santykiu (20,3 dB, palyginti su 13,0, 13,6 dB) ir maZesniu normalizuotos vidutinés
kvadratinés paklaidos vidurkiu (5,4, palyginti su 12,2, 11,5) tarp Svariy ir filtruoty
duomeny, o tai rodo, kad EEG signalai, filtruoti sitilomais duomenimis, geriau
aproksimuoja originalius be ESLT.

Kalbant apie tikruosius duomenis, 6.3 pav. pavaizduota penkiy sekundZiy
trukmés 12 uZterSty ir filruoty EEG signaly. Remiantis vizualiniu vertinimu,
pasiiilytas algoritmas sékmingai pasalino ESLT artefakto komponentus. Stebina
tai, kad AWICA ir EAWICA negaléjo tinkamai paSalinti artefakty, o kai kuriuose
signaluose (nr. 1 ir nr. 2) netgi modifikavo EEG komponentus.
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6.3 pav. Tikry uZter§ty EEG signaly (a) ir filtruoty EEG signaly pavyzdZiai pagal
siillomus SWT kurtozés (b), AWICA (c) ir EAWICA (d) algoritmus
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Pagrindinis pasiilytos SWT kurtozés privalumas, palyginti su jprastiniais
bangeliy transformacijos metodais, yra toks, kad, taikant §j algoritma, nebiitina
atlikti uZterSty EEG signaly medzio visiSkos dekompozicijos. UZtat jis automatiskai
nutraukia dekompozicijos procesa pasiekus ESLT komponentus, taip iSvengiant
nereikalingo apdorojimo ir potencialiai paspartinant triuk§mo slopinimo procesa. Be
to, Sis algoritmas padeda paSalinti keleta dabartiniy naujausiy metody apribojimy:
gali veiksmingai paSalinti ESLT artefaktus trumpame vieno EEG kanalo segmente,
jis nereikalauja didelio Zmogaus jsiki§imo, nes reikia nustatyti tik vieng parametra;
panasu, kad jis yra sukeiciamas tarp duomeny rinkiniy ir jam nereikia pradinio
kalibravimo. D¢l Siy funkcijy jj puikiai tinka naudoti su nebrangiomis EEG
galvajuostémis.

6.2.2. AKIU MIRKCIOJIMO ARTEFAKTAI EEG: APTIKIMAS IR SALINIMAS

Akiy mirkciojimo artefaktai dél savo amplitudés ir daZznio diapazono [50] kelia
nemazai problemy EEG jraSuose, ypa¢ frontaliniy kanaly. Kadangi jie yra nevalingi ir
neiSvengiami, tokios strategijos, kaip jraSymas uZmerktomis akimis, yra nepraktiskos
ilgalaikiam stebéjimui [51]. Be to, tokia strategija gali pakeisti EEG ritma [52] ir
nejmanoma atliekant vizualinio stimuliavimo eksperimentus. Taigi, norint uZtikrinti
tikslia smegeny veiklos analize, ypa€ vieno frontalinio kanalo EEG sistemose, labai
svarbu filtruoti akiy mirk¢iojimg. Dabartiniai paZangiausi jo Salinimo metodai
daZniausiai skirti apdoroti neprisijungus arba daugiakanalei EEG konfigtracijai,
tadiau juose neatsiZvelgiama j gyvybiskai svarby poreikj realiuoju laiku paSalinti
akiy mirkciojima neSiojamosiose vieno kanalo EEG sistemose. Tam reikalingi ir
algoritmai, galintys filtruoti artefaktinius intervalus trumpame segmente.

Cia pristatomas veiksmingas VME-DWT algoritmas, skirtas nekontroliuojamam
akiy mirkc¢iojimui aptikti ir filtruoti trumpuose vieno kanalo EEG segmentuose (3 s).
Algoritmas naudoja variacinj reZimo iSskyrima (VME) akiy mirkciojimo intervalams
(EBI) aptikti, o paskui — automating diskreCiosios bangos transformacija (DWT)
filtruoti. VME i§ uZterStos EEG iSgauna akies mirk¢iojimo signalo aproksimacija,
padedancia nustatyti artefaktinj interval3. TADA DWT filtruoja tik pasirinktus
intervalus, iSsaugodamas nefaktinius EEG segmentus be iSankstinio kalibravimo ar
artefakty nuorodos. VME-DWT veikimas vertinamas pagal pusiau imituotus ir realiai
uzterStus EEG duomenis ir lyginamas su automatinio VMD (AVMD) [59] ir DWT [55]
algoritmais, skirtais panaSioms uzZduotims trumpuose vieno kanalo EEG segmentuose.

Siilomas VME-DWT akiy mirkciojimui pasalinti

VME algoritmui, skirtam akies mirk¢iojimui aptikti, reikia nustatyti du
parametrus: kompaktiskumo koeficient ir apytikslj centrinj daznj [65]. Cia taikomas
3000 kompaktiSkumo koeficientas ir 3 Hz centrinis daZnis. Tada akies mirk¢iojimo
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smailés lokalizuojamos VME reZimu, nustatant vietinius maksimumus, virSijanc¢ius
universaligja riba. Nustacius piko vieta, uZterStoje EEG nustatomi laiko atrankiojo
filtravimo intervalai, pasirenkamas 500 ms intervalas, apimantis akiy mirkciojimo
trukme. Sutampantiems akiy mirk¢iojimo atvejams naudojamas kriterijus, matuojantis
atstuma tarp nustatyty smailiy, siekiant atitinkamai pataisyti filtravimo langg. Aptikus
artefaktiniy intervaly, triukSmui slopinti naudojamas DWT, kuris jvesties signala
suskaido j apytikslius ir detalius komponentus. DWT reikia nustatyti du parametrus:
bazin¢ bangeliy funkcija ir dekompozicijos lygj. Db4 pasirenkamas kaip pagrindiné
bangelé dél savo panaSumo j akiy mirk¢iojimg. Automatizacijai labai svarbu
nustatyti dekompozicijos lygj, o tinkamam lygiui kontroliuoti ir rasti naudojama
asimetrija pagrista strategija. Akiy mirksniy atsiradimas lemia asimetrinj EEG signalo
pasiskirstyma, todél gaunamos didelés DWT komponenty absoliutinés asimetrijos
vertés.  Absoliutus asimetrijos verciy skirtumas tarp nuosekliy aproksimacijos
komponenty naudojamas sprendZiant, ar testi, ar nutraukti dekompozicijos procesa,
kai slenkstis yra 0,1, nustatant taska, kuriame pasiekiami mirk¢iojimo komponentai.

Eksperimenty rezultatai ir aptarimas

ISanalizavus 912 trijy sekundZiy trukmeés pusiau imituoty uZterSty EEG signaly
segmentus, kuriy signalo ir triuk§Smo santykis svyruoja nuo -8 iki +3 dB, VME-DWT
aptiko daugiau kaip 95% akiy mirksniy. Vertinant akiy mirkciojimo paSalinimo
veiksminguma, VME-DWT pranoko AVMD ir DWT, nes jo vidutiné santykiné
kvadratiné paklaida buvo mazesné¢ (0,42, palyginti su 0,59, 0,87), o vidutiné
koreliacijos koeficiento verté — didesné (0,92, palyginti su 0,83, 0,58) tarp EEG be
akiy mirkciojimo ir filtruotos EEG, o tai rodo jo pranaSuma iSsaugant originalius EEG
signalo komponentus.

6.4 pav. pavaizduoti tikry uZterSty EEG signaly iS keturiy duomeny baziy
pavyzdZiai su juos atitinkanciais filtruotais EEG signalais. Kaip galima pastebéti,
pasiulytas algoritmas gali daug geriau filtruoti intervalus su akiy mirk¢iojimo
artefaktais.

Kadangi tikrieji artefaktais neuZterSti EEG signalai neZinomi, laiko kriterijai
buvo skaiCiuojami tik tarp tikryjy ir filtruoty EEG signaly intervaly be akiy
mirk¢iojimo [39]. 6.1 lentelé rodo VME-DWT pranasuma, palyginti su AVMD ir
DWT, siekiant iSsaugoti intervalus be artefakty.

ISvados atskleidZia keleta sitlomos VME-DWT pranaSumy, palyginti su esamais
metodais:

1. Rodo gebé¢jima veiksmingai aptikti ir paSalinti akiy mirk¢iojimg per trumpag
vieno EEG kanalo intervalg, net kai skirtingas signalo ir triukSmo santykis;

2. Universalus, gerai veikia naudojant skirtingy charakteristiky jraSytus EEG
signalus, o tai rodo jo nepakei¢iamuma;
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6.4 pav. Stulpeliuose pateikti tikro uzZterSto EEG signalo pavyzdziai is [71] (a), [72]
(b), [73] (¢), [74] (d), 0 Zemiau — atitinkami filtruoti EEG signalai

6.1 lentelé. UZterSty ir filtruoty EEG signaly bei uZterSty ir filtruoty realiy duomeny
akiy nemirkc¢iojimo intervaly CC ir RRMSE palyginimas (vidurkis + SD) (CC ir
RRMSE reiskia koreliacijos koeficienta ir santyking viduting kvadrating paklaida)

Duomeny bazé VME-DWT AVMD DWT

CC RRMSE RRMSE CC RRMSE
[71] 0,94+0,03 0,16+0,04 0,89+0,08 0,18+0,10 0,68+0,11 0,84+0,18
[72] 0,97+0,02 0,14+0,02 0,93+0,04 0,21+0,12 0,73+0,03 0,96+0,03
[73] 0,93+0,04 0,15+0,05 0,88+0,07 0,19+0,06 0,64+0,14 0,76+0,23
[74] 0,98+0,01 0,09+0,04 0,84+0,06 0,19+0,09 0,62+0,14 0,94+0,34

3. Palyginti su kitais dekompozicijos algoritmais, tokiais kaip AVMD ir DWT,
yra maziau invazinis, nes atrankiai filtruoja tik uZterStus intervalus, nepakeisdamas

neartefaktiniy segmenty;

4. Nesiremia artefakty nuorodomis ir jam nereikia pradinio kalibravimo, o tai
dar labiau supaprastina jo jgyvendinimo procesa.
Deél Siy privalumy jis puikiai tinka akiy mirk¢iojimui Salinti nebrangiose EEG

galvajuostése.
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6.3. MIEGO VERTINIMAS: BUDRUMO IR I MIEGO STADIJOS
ATPAZINIMAS

eV —

ne tik asmens sveikatai, bet ir ekonominiam produktyvumui bei saugumui [5]. Nors
polisomnografija yra auksinis miego stebésenos standartas, jos klinikiniai reikalavimai
ir jutikliy apkrova riboja platy pritaikyma [75]. Reaguodami j tai, tyréjai sukuré
algoritmy, naudojanciy mazos galios dévimuosius prietaisus, ypa¢ EEG [76], kad
buty galima stebéti miegg namuose ir taip patenkinti prieinamesniy ir nepastebimy
sprendimy poreikj. Nepaisant gausios EEG informacijos, reikalingos miego analizei
atlikti, dél panaSiy EEG charakteristiky vis dar sunku atskirti budruma nuo I miego
etapo [82,85-90]. Sis atpaZinimas yra labai svarbus norint jvertinti miego pradZios
vélavima, pagrindinj miego kokybes vertinimo rodiklj [91]. Nors pagalbiniai jutikliai,
tokie kaip elektrokardiograma [92], elektromiograma ir elektrookulograma [93], gali
padidinti atpaZinimo tiksluma, jie apsunkina dévimyjy prietaisy naudojima.

Nors vis dar gincijamasi dé¢l netiesinés EEG prigimties, keli tyrimai parodé
netiesiniy matavimy pranaSuma, palyginti su tiesiniais, jvairiose EEG taikymo srityse
[101-103], ypa¢ samonés tyrimuose [104, 105]. Motyvuojant tuo, kad budrumo ir
I miego stadijos atpaZinimas gali buti susijes su samonés lygiu [106] ir priemoniy
iSskyrimo i§ EEG pojuosc¢iy veiksmingumu vertinant miegg [82, 85, 86], sitilomas
netiesiniy priemoniy rinkinys, iSskirtas i§ vieno frontalinio EEG kanalo pojuosciy,
siekiant pagerinti budrumo ir I miego stadijos klasifikavima. Netiesiniy priemoniy
veiksmingumas paprastai priklauso nuo keliy parametry nustatymo rankiniu budu,
padidinant zmogaus jsikisima. Siuo tikslu naudojami EEG signalai i$ keturiy skirtingy
miego duomeny baziy, i§ kuriy viena skirta netiesinéms funkcijoms derinti, o kita —
pakoreguoty priemoniy veiksmingumui tirti. Sitlomo priemoniy rinkinio efektyvumas
taip pat lyginamas su RBP analize, kuri laikoma vienu i$ labiausiai paplitusiy EEG
pagristos miego analizés metody [81-84].

6.3.1. Duomenys

Cia naudojami 20 s trukmés vieno frontalinio kanalo EEG signalai, atspindintys
budrumo ir I miego stadijos buisenas i§ keturiy skirtingy duomeny baziy, t.y. Sleep
Telemetry [113], DREAMS [114], DCSM [115] ir MESA [116]. 6.2 lenteléje
pateikiamas kiekvienos duomeny bazés baly metodas, méginiy émimo daZnis,
naudojamas kanalas, miego sutrikimo buisena, tiriamyjy skaicius, budrumo (W) ir I
miego stadijos (S) biisenos.
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6.2 lentelé. Naudojamy duomeny baziy apraSymo santrauka

Duomeny bazé Sleep Telemetry DREAMS DCSM MESA

TaSkai R&K R&K AASM AASM
Fs (Hz) 100 200 256 256
Miego sutrikimai Yra Néra Yra Yra
Kanalas Fpz-Cz Fpl-Al F3-Al1 Fz-Cz
Tiriamyjy skai¢ius 22 20 20 27

Nr. W 4920 4576 3921 7000
Nr. S 4604 1788 2142 4122

6.3.2. Sialoma budrumo ir I miego stadijos atpaZinimo sistema

6.5 pav. pateikta blokiné diagrama apibiidina algoritmo strukttra, kurig
sudaro pirminio apdorojimo, EEG pojuos¢iy dekompozicijos, priemoniy i§skyrimo ir
klasifikavimo etapai.

Feature extraction
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| \‘ HFD;, KFDg DispEng, BubbEng
HF D, KFD,, DispEn,, BubbEng,

X, (n 7
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6.5 pav. Sialomo budrumo ir I miego stadijos atvejy klasifikavimo, naudojant vieng
EEG kanalg, algoritmo blokiné schema

Per pirminj apdorojima jraSyti EEG signalai filtruojami naudojant kurtozés
principu pagristg kietaji universaly SWT slenkstj, kad buty pasalinti artefaktai su
Zemo ir aukSto daZnio komponentais. Véliau DWT iSskaido EEG signalg j detalius ir
apytikslius komponentus, leidZiancius iSgauti skirtingy daZniy diapazonams budingus
pojuosciy signalus. Keturi DWT lygiai naudojami EEG signalui iSskaidyti j gama,
beta, alfa, teta ir delta juostas. Po dekompozicijos i$ kiekvienos pojuostés iSrenkami
keturi netiesiniai matai — Higuchi ir Katzo fraktaliniai matmenys (HFD, KDF),
burbuliné entropija (BubbEn) ir dispersiné entropija (DispEn) — ir suformuojamas
funkcijy vektorius, kurj sudaro 20 maty. Galiausiai budrumo ir I miego stadijos atvejai
klasifikuojami naudojant pagalbine vektoriy maSing (SVM) su radialinés bazinés
funkcijos branduoliu.

6.3.3. Eksperimenty rezultatai ir aptarimas

Taikomy netiesiniy funkcijy parametrai, t. y. didZiausias HFD intervalas,
jterpimo dimensija BubbEn ir jterpimo dimensija, klasiy skaicius ir laiko delsa DispEn,
taisomi naudojant miego telemetrijos duomeny baze. Sioje duomeny bazéje galima
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rasti jvairig kohorta, kuri palengvina patikimg parametry derinima. Koregavimai
atliekami remiantis Vilkoksono rangy sumos testu tarp budrumo ir I miego stadijos
atvejuy.

Taikant Sleep Telemetry duomeny bazei (6.6 pav., a), pasidlytas funkcijy
rinkinys buvo pranaSesnis uz RBP, atitinkamai 10,71%, 10,93% ir 10,76% didesnés
vidutinés Sen, Spe ir Acc vertes. DREAMS duomeny bazéje (6.6 pav., b), nors
abiejuose funkcijy rinkiniuose buvo panaSios SPE vertés, pasiulytasis pranoko RBP
pagal Sen (87%, palyginti su 71%) ir Acc (92%, palyginti su 88%). Kalbant apie
DCSM duomeny baze (6.6 pav., c), pasitlytasis funkcijy rinkinys jgijo 16,79%,
2,53% ir 7,86% didesnes vidutines Sen, Spe ir Acc reikSmes. Kalbant apie MESA
duomeny bazg¢ (6.6 pav., d), nors abu funkcijy rinkiniai turé¢jo panaSias Spe ir Acc
reikSmes, pasiiilytasis poZymiy rinkinys turéjo 5,88% didesnj Sen vidurkj. Pagal atlikta
nepriklausoma dviejy imciy t-testa nustatytas statistiSkai reikSmingas skirtumas tarp
pasiulytojo ir RBP funkcijy rinkiniy gauty Sen reikSmiy (p < 0,05).

N Proposed NN RBP
@ ()

100 100
90 90
S S
70 70
60 60
Acc Sen Spe Acc Sen Spe
© Q)
100 100
90 90
g 80 S
70 70
60 60
Acc Sen Spe Acc Sen Spe

6.6 pav. SVM gauty Acc, Sen ir Spe verciy (vidurkis + SD) palyginimas, abiem
funkcijy rinkiniams naudojant miego telemetrijos (a), DREAMS (b), DCSM (c¢) ir
MESA (d) duomeny bazes

Sio tyrimo svarbg lemia miego pradZios vélavimo analizé, atspindinti bendra
mieguistumg ir miego kokybe, kuri taip pat gali biiti naudojama atsigavimui nuo
komos prognozuoti. Siuo tikslu buvo tiriami HFD, KFD, BubbEn ir DispEn, i$skirti
i§ EEG pojuosciy. KFD matuoja sudétingumo ir savipanaSumo laipsnj pagal tai, kaip
greitai signalas didéja ar mazéja, keiciant mastelj. Kadangi tikimasi, kad EEG bus
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sudétingesné, kai Zmogus budrus, manoma, kad FD reikSmés bus didesnés. Kita
vertus, entropija kiekybiSkai jvertina tai, kiek signalas neapibréZtas. Taigi, manoma,
kad, Zmogui esant budriam, pastebimas didesnis neapibréZtumas [106].

Palyginti su Siuolaikiniais algoritmais, siiilomo algoritmo privalumus galima
aptarti dviem budais. Pirma, nors dauguma tyrimy vertino tik vieng ar dvi duomeny
bazes rezultatams pranesti [76, 83, 84, 86, 88-90, 95, 97-99], siulomo algoritmo
veikimas buvo vertinamas naudojant keturias duomeny bazes, tad ¢ia pateikti rezultatai
yra patikimesni, nes buvo naudojamos skirtingos duomeny bazés, pasiZymincios
iSskirtinémis savybémis. Antra, siiilomam algoritmui reikia maZiau skaiiavimo
galios ir iStekliy, palyginti su gilaus mokymosi metodais [49,98,99]. Be to, giliuoju
mokymusi grindZiamiems metodams sukurti ir jgyvendinti reikia daug pradiniy Ziniy
ir patirties.
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6.4. VAIRUOTOJO NUOVARGIO PATIKRINIMAS

6.4.1. AKIU MIRKCIOJIMO VAIDMUO NUSTATANT VAIRUOTOJO
NUOVARGI PREPRIEKINES EEG PAGRINDU

Mokslininkai pripaZino akiy mirk¢iojimo analizés svarbg nustatant vairuotojo
nuovargj [143-145]. TradiciSkai akiy mirk¢iojimas registruojamas naudojant Salia
akies esancius elektrodus, o tai gali buti sudétinga tiriamiesiems ir riboti jy regéjimo
laukg [146]. Alternatyvus metodas, orientuotas j su mirkciojimu susijusiy funkcijy
iSgavimg i§ frontaliniy EEG kanaly, sitlo paprastesne dévimaja saranga ir yra
perspektyvus, nustatant vairuotojy nuovargj [134, 146, 147]. Nors ankstesniuose
tyrimuose buvo isfiltruoti akiy mirk¢iojimai siekiant pagerinti EEG analizg [139, 140,
150-153] arba iSskirtos su mirkciojimu susijusios funkcijos kartu su uZterSta EEG
analize [134, 146, 148, 149], nebuvo istirtas akiy mirk¢iojimo EEG potencialas kaip
informacijos $altinis ir artefaktas. Cia pristatomas naujas algoritmas, skirtas tuo paciu
metu iSgauti akiy mirk¢iojimo funkcijas ir jas paSalinti i§ Zemo kanalo prepriekinés
EEG signaly. Sis algoritmas, kuriam nereikia artefakty nuorodos, sintetiniy duomeny
generavimo ar pradinio kalibravimo, susideda i§ EBI identifikavimo naudojant VME
i§ Fpl EEG kanalo, Siy intervaly projektavimo j kitus EEG kanalus ir pagrindiniy
komponenty analizés (PCA)-DWT naudojimo akiy mirk¢iojimo komponentams
pasalinti. Tada iSvestos su mirk¢iojimu susijusios funkcijos derinamos su filtruoty
EEG signaly juosty galios funkcijomis, kad buity galima klasifikuoti vairuotojo biisena.

Vienalaikis akiy mirkc¢iojimo apibudinimas ir paSalinimas i§ EEG, siekiant
nustatyti vairuotojo nuovargj

Sitlomo algoritmo blokiné schema, pavaizduota 6.7 pav., apibiidina pagrindinius
jo etapus, tai: EBI identifikavimas i§ EEG, naudojant VME, su mirk¢iojimu susijusiy
funkcijy iSgavimas, mirk¢iojimo daZnis (BR) ir jo amplitudé (BA), EBI filtravimas
i§ EEG per PCA-DWT ir mirkc¢iojimo bei juostos galios funkcijy panaudojimas i§
filtruoty EEG signaly vairuotojo busenai klasifikuoti. PaSalinus akiy mirkciojima,
apskaic¢iuojamos EEG juostos galios funkcijos, sutelkiant démesj i teta, alfa ir beta
juostas, bet ne j delta juosta, susijusia su gilaus miego stadijomis. Véliau budrumo
ir nuovargio busenos klasifikuojamos naudojant SVM su radialine bazine funkcija,
kurios hiperparametrai optimizuojami taikant tinklelio paieska ir deSimties karty
kryZminj patvirtinima.

Eksperimenty rezultatai ir aptarimas

6.8 pav. rodo, kad vairuotojo nuovargio nustatymas pageréjo naudojant BR ir BA
kaip papildomas funkcijas, be EEG signaly dazniy juostos galios funkcijy, prie§ ir po
akiy mirk¢iojimo paSalinimo sitilomu algoritmu. Kaip parodyta, didesnis Sen vidurkis
(80,7%, palyginti su 72,1%), Spe (75,2%, palyginti su 70,1%) ir Acc (78,1%, palyginti
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6.7 pav. Siilomo algoritmo, skirto tuo pa¢iu metu iSskirti ir pasalinti akiy mirkciojimo
funkcijas, siekiant pagerinti vairuotojo buklés stebéjimo kokybe, blokiné schema.
Blokeliuose, pazymétuose Zaliomis bruksninémis linijomis (apskritimas A), parodyti
siillomo akiy mirk¢iojimo aptikimo (raudona spalva) ir filtravimo (Zydra spalva) i
EEG algoritmo etapai, o blokeliuose, pazymétuose tamsiai mélynomis bruks$ninémis
linijomis (apskritimas B), — vairuotojo nuovargio aptikimo procedira naudojant
mirk¢iojimo ir filtruoty EEG juosty galios funkcijas pagal SVM (violetiné spalva)

su 71,2 %) buvo pasiektas, tuo paciu metu isskiriant ir paSalinant akiy mirk¢iojimo
funkcija.

% p<0.05 [N Fittered EEG+ER (I Raw EEG+EB

*

(%)

Sen Spe Acc

6.8 pav. Vairuotojo nuovargio aptikimo naudojant BR ir BA kokybés pageréjimas pries
ir po akiy mirk¢iojimo paSalinimo sitilomu algoritmu. EB reiSkia akiy mirk¢iojima

Dabartiniuose naujausiuose tyrimuose akiy mirk¢iojimas laikomas informacijos
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Saltiniu [148, 149] arba artefaktais [139, 140], o tai paneigia galimybe, kad akiy
mirkciojimas gali buti ir vienas, ir kitas Saltinis. IS tiesy, mes parodéme, kad
mirkc¢iojimo funkcijy iSskyrimas, o paskui jo pasalinimas i§ Zemo kanalo prepriekinés
EEG signaly gali padéti dar tiksliau nustatyti vairuotojo nuovargj, palyginti su tais,
kurie jj laiko tik artefakto arba informacijos Saltiniu.

6.4.2. EEG IR AKIU MIRKCIOJIMO ANALIZES SINTEZE VAIRUOTOJU
NUOVARGIUI NUSTATYTI

Nors keliuose EEG grindZiamuose tyrimuose daugiau kaip 90% tikslumu nustatytas
vairuotojo nuovargis, daugumoje jy buvo atsiZvelgta j daugiakanalius EEG jraSus,
pavyzdZiui, [131, 135, 171-173], o tai didina dévimy prietaisy sudétinguma [174] ir
yra nepatogu ilgalaikiam vairavimui. Taciau, atsiradus nebrangioms nesiojamosioms
vieno kanalo EEG galvajuostémis, atsirado ir nauja galimybé nustatyti vairuotojo
nuovargj tikroviSkomis salygomis [140, 175]. Viena vertus, jraSinéti EEG iS
prepriekinés Zievés gali buti patogiau, nes tai neplaukuota sritis, t. y. maziau trukdziy,
triukSmo [139], be to, tai gali suteikti naudotojui daugiau komforto, nes vairuojant
galima naudotis galvos atrama [148]. Kita vertus, akiy mirk¢iojimas frontaliniuose
EEG signaluose taip pat gali buti naudojamas vairavimo nuovargiui apibudinti [147].
Dél Sios priezasties pirmenybé turéty buti teikiama algoritmams, kuriais galima
nustatyti vairuotojo nuovargj, naudojant viena prepriekinés EEG kanala.

Nepaisant daug Zadanciy rezultaty, gauty atlikus keleta tyrimy vairuotojy
nuovargiui nustatyti, kuriuose jis buvo nustatytas naudojant viena prepriekinés EEG
kanalg, tik vienos duomeny bazés naudojimas yra galimas apribojimas. Ypac
svarbu, kad, naudojant netiesines priemones, pavyzdZiui, entropija, biity galima
tarpusavyje sukeisti pritaikytas funkcijas kitose duomeny bazése. Cia pateikiamas
naujas metodas vairuotojo nuovargiui nustatyti naudojant vienag Fp1 EEG kanala, kurio
veiksminguma vertina dvi skirtingos duomeny bazés; pirmoji naudojama pasitilyto
metodo parametrams tikslinti, o antroji — sureguliuoty parametry veiksmingumui
jvertinti.

EEG ir akiy mirkciojimo analizés integravimas

Apskritai, nuovargio pradZzia EEG gali geriau atskleisti jos subjuosty analizé
[126, 148, 176, 178]. Kita vertus, kaip rodo sgmonés biuiseny klasifikavimo tyrimy
kontekstas, EEG gali buti sudétingesné, kai tiriamasis yra budrus [104, 137, 179],
galima tikeétis, kad sudétingumo priemonés bus geri rodikliai vairuotojo nuovargiui
nustatyti. Be to, jrodyta, kad mirk¢iojimas turi ir teigiama, ir neigiama poveikj, EEG
nustatant vairuotojo nuovargj [20]. Remiantis minétomis prielaidomis, miisy siilomu
metodu pirmiausia nustatome EEG EBI, taikydami judancio standartinio nuokrypio
(MSD) algoritma, kad iSskirtume su mirkciojimu susijusias funkcijas. Antra, EBI
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filtruojami i§ EEG taikant DW'T. Trecia, isfiltruota EEG suskirstoma j pojuostes, kad
biity galima iSgauti skirtingas funkcijas. Galiausiai iSskirtinés funkcijos atrenkamos
taikant kaimynystés komponenty analizés (NCA) algoritma ir perduodamos jvairiems
klasifikatoriams, kad bty galima atskirti nuovargj ir budry vairavima (6.9 pav.).
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6.9 pav. Siilomo metodo, skirto nuovargiui ir budriam vairavimui klasifikuoti,
naudojant vieng Fpl EEG kanala, blokiné schema

EEG ir akiy mirkciojimo funkcijos

Visuotinai Zinoma, kad kai tiriamieji atlieka regimojo démesio reikalaujancias
uzduotis, pavyzdZiui, vairuoja, jie maZiau mirksi, kad iSlikty labiau susikaupe [180,
181]. Todél, atsizvelgiant j tai, kad pavargus sumaZéja démesio koncentracija, su
mirkciojimu susijusios priemonés gali padéti atpaZinti ir atskirti budrumo ir nuovargio
biisenas. Visy pirma, buvo jrodyta, kad nors pavargus BR padidéja, BA sumaZzéja
[148]. PanaSiai apskaiCiuojami trys mirk¢iojimo matai: BR, BA ir vidutinis atstumas
tarp mirksniy (ABD). PaSalinus akiy mirksnius ir suskirs¢ius EEG j pojuostes, i$
kiekvienos iSskiriamos aStuonios funkcijos, t. y. RBP, logaritminé energijos (LeEn)
bei Senono (SE) entropijos, DispEn, BubbEn, HFD, KFD ir Hursto eksponentas (HE).

Eksperimenty rezultatai ir aptarimas
EEG netiesiniy funkcijuy parametry derinimas

Norédami suderinti naudojamy netiesiniy priemoniy, kurias reikéjo optimizuoti,
t. y. DispEn, BubbEn ir HFD, parametrus, atsiZvelgéme j maZiausia atlikto Wilcoxon
Rank-Sum testo p reik§me tarp budraus ir pavargusio vairuotojo atvejy [107]. Kalbant
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apie HFD, didZiausio laiko intervalo, Kmax, per kurj apskai¢iuojamos FD vertés,
reikSmeés buvo jvairios, nuo 2 iki 10, o Kmax = 4 buvo nustatyta kaip tinkamiausia
reikSmé. Kalbant apie BubbEn jterpimo dimensija, buvo iSbandytos vertés nuo 4 iki
16. Kaip tinkamg pasirinkome jterpimo matmenj 8. Kalbant apie DispEn, iSbandytos
kelios konfigiiracijos ir nustatyta, kad gerai tinka 4 jterpimo dimensija, 2 klasiy skaiCius
ir viena laiko delsa.

Funkcijy pasirinkimas

6.3 lenteléje parodytos svertinés funkcijos naudojant NCA, optimizuotus
stochastiniu gradientinio nusileidimo algoritmu. Klasifikacijai pasirenkamos
funkcijos, kuriy svorio verté yra didesné nei 0,5 (18 priemoniy).

6.3 lentelé. Svertinés funkcijos, naudojant NCA (pasirinktos funkcijos paryskintos)

Funkcijos Svoris
EEG juostos
Delta Teta Alfa Beta Gama

RBP 059 0,13 021 1,84 031
DispEn 0,74 0,12 0,05 0,31 0,56
BubbEn 0,07 0,08 0,14 0,01 0,74
HFD 0,11 034 086 142 0,85
KFD 0,09 1,26 1,71 0,33 1,16
HE 0,02 036 0,01 0,01 1,14
WLE 1,38 1,73 035 0,13 1,98

SE 0,08 088 0,04 024 037
Mirkteléjimas

BR 1,12

BA 0,79

ABD 0,05

Klasifikavimo rezultatai

6.10 pav. rodo visy keturiy modeliy nematyty bandymy duomeny klasifikavimo
rezultatus pagal Acc, Sen, Spe ir AUC. Palyginimas patvirtina, kad AdaBoost yra
pranaSesnis uZ kitus modelius.

Kai j modelius buvo pateiktas pasirinktas duomeny bazés A funkcijy rinkinys,
AdaBoost klasifikatorius pasieké geresniy rezultaty nei kiti — jo vidutiniai Acc, Sen,
Spe ir AUC atitinkamai yra 88,4%, 90,2%, 87,7% ir 0,94. Antrasis geriausias modelis
buvo SVM, kurio vidutinis Acc buvo 83,7% (4.6 a-b). Remiantis atliktu nepriklausomu
dviejy imdiy t-testu, nustatytas statistiSkai reikSmingas skirtumas tarp AdaBoost ir kity
klasifikatoriy Acc, Sen ir Spc reikSmiy (p < 0,05). Kalbant apie B duomeny baz¢ (4.6
c-d), kaip ir A duomeny bazés atveju, AdaBoost modelis pasieké didZiausias vidutines
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Sen Spe

6.10 pav. Klasifikavimo rezultatai, nustatant vairuotojo nuovargj pagal visus modelius.
A duomeny bazé (a)-b), B duomeny baze (c)-d)

Acc, Sen, Spe ir AUC vertes, atitinkamai 87,4%, 85,5%, 86,8% ir 0,93. ISskyrus
AdaBoost, SVM ir RF SPE vertes, pastebimas statistiSkai reik§Smingas skirtumas tarp
gauty rezultaty pagal AdaBoost ir kitus klasifikatorius (p < 0,05).

Diskusija

Sis metodas, pagristas vienalaike EEG ir mirksniy analize per vieng prepriekinj
kanala, yra sukurtas biitent tam, kad biity galima paSalinti praktinius dabartiniy tyrimy
apribojimus. Sutelkiant démesj j viena prepriekinj EEG kanalg ir sumaZinant priedy
skaiCiy, siekiama pateikti patogesnj ir praktiSkesnj vairuotojo nuovargio nustatymo
sprendima. IS tiesy, naudojant vieng prepriekinés EEG kanala, naudotojui suteikiama
daugiau komforto, nes ant kaktos, kuri yra beplauké, dedamas tik vienas elektrodas.
Be to, prepriekinés EEG signale yra akiy mirkciojimo pokyciy, kurie, kaip jrodyta,
koreliuoja su peréjimu i§ budrumo biisenos j nuovargio [147, 148, 180]. Deél Sios
priezasties su mirk¢iojimu susijusios priemonés gali biti iSskirtos i§ prefrontalinio
EEG kanalo ir naudojamos kaip papildoma informacija.

Kita vertus, keliuose tyrimuose, kuriuose buvo nagrinéjamas nuovargio
vairuojant nustatymas, remiantis vienu arba mazu prefrontaliniu EEG kanalu, buvo
naudojama tik viena duomeny bazé sitillomiems metodams kurti ir jy veiksmingumui
iSbandyti [20, 148, 153, 176, 177]. Neabejotina, kad literatiiroje buvo sumenkintas
pateikty vairuotojy nuovargio nustatymo metody pakei¢iamumas naudojant skirtingas
duomeny bazes, kurios yra labai svarbios tikram pritaikymui. Siekiant iSspresti
minétg problema, pasiiilyto metodo veiksmingumas nustatant vairuotojy nuovargj
buvo jvertintas naudojant dvi duomeny bazes; pirmoji duomeny bazé buvo naudojama
parametrams derinti, o antroji — testavimui.
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6.5. ANESTEZIJOS STEBEJIMO GYLIS
6.5.1. EEG ENTROPIIOS ANALIZE ANESTEZIJOS GYLIUI STEBETI

Entropijos analizé tapo populiariu anestezijos gylio (angl. Depth of Anesthesia,
DoA) stebéjimo metodu dél netiesiniy EEG signaly charakteristiky [203]. Pagrindinis
principas yra tas, kad, giléjant anestezijai, sgmonés aktyvumas mazéja, todél keiciasi
tai, kiek sudétingas yra EEG signalas [205]. Entropijos rodikliai, tokie kaip SampEn,
permutacijos entropija (PeEn), spektriné entropija (SpEn) ir apytikslé entropija
(AppEn), kiekybiskai jvertina EEG bangy formy netolyguma ir sudétingumg ir yra
perspektyviis vertinant DoA [213-216]. Visgi Siame kontekste iSsklaidytos entropijos
(FuzzEn) ir nuolydZio entropijos (SlopEn) tyrimai tebéra riboti, nepaisant jy potencialo
jveikti jprastiniy entropijos metriky trikumus.

FuzzEn suteikia galimybe prisitaikyti prie skirtingy duomeny charakteristiky,
nes leidZia skaiciuoti pagal jvairias narystés funkcijas, tad gali veiksmingiau nei
SampEn ir AppEn atspindéti sudétingus EEG signaly rySius [217,218]. Kita vertus,
SlopEn sprendZia SampEn ir PeEn trikumus, kiekybiskai jvertindamas EEG signaly
nuolydzio pokycius laikui bégant, kurie gali rodyti anestezijos gylio pokycius [219,
220]. Atsizvelgiant j per anestezijg stebimus EEG aktyvumo modelius, kuriems
budingas padidéjes reguliarumas ir sinchronizacija, SlopEn démesys EEG signalo
veréiy poky¢iams leidzia tikétis patikimo DOA stebéjimo. Sio skyriaus tikslai
— iStirti FuzzEn ir SlopEn veiksmingumg DoA stebésenai ir jj jvertinti, palyginti
su pripaZintomis entropijos metrikomis, tokiomis kaip SampEn, SpEn ir AppEn,
naudojant A duomeny baze, kaip aptarta [213].

Metodologiné strategija

DoA stebésenos metodologiné strategija naudojant skirtingas entropijos metrikas
pateikta 6.11 pav. IS pradZiy EEG signalai i§ anksto apdorojami segmentuojant
juos j penkiy sekundziy intervalus, taikant ,,Butterworth* juostos pralaidumo filtra
ir pasalinant artefaktus bangeliy transformacijos filtru [18]. Tada, naudojant nulinés
fazes filtrus, signalai iSskaidomi j pojuostes nuo delta iki gama. Véliau i§ pojuosciy
iSskiriami SampEn, AppEn, SpEn, FuzzEn ir SlopEn kiekybiniam palyginimui.

FuzzEn, apskai¢iuotas naudojant Gauso (Gau) ir eksponenting (Exp) narystés
funkcijas, parodo, kad jj galima pritaikyti prie skirtingy duomeny charakteristiky.
SlopEn taip pat kiekybiSkai jvertina EEG signaly nuolydZio poslinkius laikui bégant,
galimai uZfiksuodamas poslinkius, rodancius anestezijos gylio pokycius [217, 219].
FuzzEn ir SlopEn bei parametrai kartu su kitomis entropijos metrikomis yra kruops¢iai
sureguliuoti, siekiant tinkamiausio veikimo. Galiausiai DoA indekso reikSméms
prognozuoti taikomas neuroninio tinklo regresijos modelis, kurio hiperparametrai
tikslinami, naudojant Bajeso optimizavimg ir modelio vertinima, pagrjsta vidutine
absoliuciaja paklaida ir koreliacijos koeficientu tarp apskaiciuoty ir referenciniy DoA
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6.11 pav. DoA stebéjimo, naudojant skirtingus entropijos rodiklius, blokiné diagrama
indekso reikSmiy.

DoA stebésenos naudojant skirtingas entropijos metrikas blokiné diagrama

Rezultaty patikimumas uZtikrinamas taikant 10-ies karty kryZminio patikrinimo
strategija per mokymo patvirtinima ir vertinima atskiroje bandomojoje aibéje. 6.4
lenteléje. kiekybiSkai jvertinamas kiekvienos entropijos metrikos veiksmingumas,
remiantis vidutine absoliucigja paklaida ir koreliacijos koeficientu, kai tiek FuzzEn,
tiek SlopEn variacijose yra santykinai maZos vidutinés absoliuciosios paklaidos vertés
(6,4, 6,7 ir 6,8) ir didelés koreliacijos koeficiento vertés (0,77, 0,75 ir 0,74). Tai rodo
tikslesnj etaloniniy DoA indekso reikSmiy jvertinima. Ir, atvirkS¢iai — SampEn ir
AppEn rodo didesnes vidutines absoliutinés paklaidos vertes (8,7 ir 8,9) ir vidutines
koreliacijos koeficiento vertes (0,63 ir 0,61). PaZymeétina, kad reik§mingo skirtumo
tarp FuzzEn ir SlopEn metriky rezultaty nenustatyta, taciau buvo pastebétas statistiSkai
reik§mingas skirtumas, palyginti su kitomis metrikomis.

6.4 lentelé. Kiekvienos entropijos rezultatai, regresuojant DoA indekso reikSmes

Entropijos tipas Metrika (u + o)
MAE CcC

FuzzEn (Gau) 6,4+0,7 0,77 + 0,02

FuzzyEn (Exp) 6,7+0,5 0,75+ 0,01

SlopEn 6,8+06 0,74 + 0,03
SampEn 87+09 0,63+0,05
AppEn 89+1,1 0,61 +0,04

SpEn 10,7+ 1,8 0,37 + 0,10

Be to, sujungus abu FuzzEn variantus gaunami palankiis rezultatai — koreliacija
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yra 0,85, o vidutiné absoliucioji paklaida — 5,4. Tai rodo kombinuoty FuzzEn metriky
veiksminguma siekiant tiksliai stebéti DoA (6.12 pav.).
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6.12 pav. AE sklaidos diagramos ir histogramos tarp atskaitos ir apskai¢iuoty DoA
indekso verciy, naudojant sulieta FuzzEn

Geresnj FuzzEn su Gau ir eksponentine Exp narystés funkcijomis veiksminguma,
palyginti su SampEn ir AppEn, galima paaiskinti keliais veiksniais:

1. FuzzEn narystés priemoniy panaudojimas leidZia geriau atspindéti
neapibréZtumo niuansus. Jis uzfiksuoja skirtingus duomeny neapibréztumo laipsnius
ir siilo lankstesnj modelj nei dvejetainiai SampEn ir AppEn skirtumai;

2. FuzzEn pasiZymi gebéjimu prisitaikyti prie duomeny charakteristiky, o
Gau ir Exp narystés funkcijos suteikia platesnj spektra sudétingiems EEG signaly
santykiams modeliuoti pritaikant variantus, atsiZvelgiant j skirtumus, kuriy SampEn ir
AP-PEN priemonés veiksmingai neuzfiksuoja;

3. Derinant FuzzEn su tinkamomis narystés funkcijomis, padidéja atsparumas
EEG signaly triukSmui ir sumazéja svyravimy poveikis.

SlopEn pranasumas, palyginti su tokiomis metrikomis, kaip SampEn, ApEn ir
SpEn, yra jo savita galimybé uZfiksuoti ir kiekybiskai jvertinti signalo pokycio greitj
ar nuolydj. Kitose entropijos metrikose daugiausia démesio skiriama jvairiems signalo
sudétingumo aspektams, o nuolydZio entropija pabréZia signalo nuolydZio pokycius.
Dél Sios savybés nuolydZio entropija yra ypac jautri staigiems signalo pokyciams
ar tendencijoms, todél suteikia savita poZiirj j signalo dinamika. Atliekant DoA
stebésena, kai naudojama EEG, nuolydZio entropija gali suteikti daugiau niuansy ir
iSsamiau atspindéti pagrindinj nervinj aktyvuma. Jrodytas maZesnis jos jautrumas
duomeny ilgiui, palyginti su SampEn ir AppEn, gali padidinti anestezijos gylio
vertinimo tiksluma, todél ji yra vertinga metrika Sioje srityje.
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6.5.2. DEVIMASIS EEG PAGRISTAS ANESTEZIJOS STEBEJIMO GYLIS:
NEPARAMETRINIS FUNKCIJU RINKINYS

Bendroji anestezija, biitina saugioms chirurginéms procediroms atlikti, reikalauja
tikslios kontrolés, kad buty iSvengta tokiy komplikacijy, kaip Sirdies ir kraujagysliy
jtampa ir pooperacinés kognityvinés problemos. Anestezijos gylio (DoA) stebésena,
daugiausia pagrjsta EEG signalais, padeda palaikyti tinkama sagmonés netekimo lygj,
uZtikrindama tiek paciento sauga, tiek ekonomine¢ naudg. Siekiant supaprastinti
EEG duomenis j skaitines skales, buvo sukurtos jvairios sistemos, pavyzdZiui,
bispektrinio indekso (BIS) monitorius, taciau del dideliy sgnaudy ir priklausomybés
nuo vienkartiniy elektrody jos sunkiai prieinamos. Dél Sios prieZasties reikia ieskoti
alternatyviy, ekonomiSkai veiksmingy metody, pavyzdziui, tokiy, kurie naudoja
jprastas vieno kanalo EEG sistemas.

Nepaisant to, naudojant tik vieng duomeny baze¢ DoA stebéjimo algoritmui
kurti ir iSbandyti, galima apriboti tyrimus, kuriuose naudojamos tokios sistemos.
Tai ypa¢ pastebima naudojant netiesines funkcijas, pavyzdZiui, SampEn, kurioms
prie§ skaiCiavimg reikia sureguliuoti parametrus [227]. IS tiesy, nebuvo atsizvelgta
i galimybe keisti sureguliuotas funkcijas skirtingose duomeny bazése, nors ji yra labai
svarbi siilomo metodo bendrumui [221,228]. Taigi, siekiama dviejy tiksly: (i) jdiegti
naujg, parametry neturintj funkcijy rinkinj, skirta DoA stebésenai, naudojant vieng
frontalinj EEG kanalg, paSalinant Zmogaus jsiki§imo poreikj, derinant parametrus
pries skaiciavima, ir ii) iStirti pasiiilyto poZymiy rinkinio veikimg dviejose skirtingose
duomeny bazése, uZtikrinant pasiillyto funkcijy rinkinio apibendrinima, kai jis
taikomas duomenims, jraSytiems su skirtingomis charakteristikomis, pavyzdziui,
skirtingu méginiy émimo daZniu.

Siulomas algoritmas

Siilomas DoA stebésenos algoritmas pavaizduotas 6.13 pav., jis susideda
i§ pirminio apdorojimo, pojuos¢iy dekompozicijos, funkcijy iSskyrimo, funkcijy
atrankos ir regresijos etapy. ISankstinio apdorojimo ir pojuostés dekompozicijos
etape EEG signalas segmentuojamas ir filtruojamas, siekiant paSalinti triukSmg ir
artefaktus. Paskui, naudojant nulinés fazés filtrus, iSvedamos EEG pojuostés. Funkcijy
iSskyrimas apima entropija pagristas galios ir dazniy juostas, fraktalais ir variacijomis
pagristas funkcijas, atspindincias jvairius EEG signalo savybiy aspektus, svarbius
DoA stebésenai. Entropijos priemonés kiekybiSkai jvertina EEG netolygumus, o
galios ir daZniy juostos funkcijos suteikia jZvalgy apie pojuosciy veiklos dinamika.
Fraktalais pagristi poZymiai atspindi EEG sudétingumg, o variacijomis pagrjstos
funkcijos parodo su anestezija susijusius EEG modelio pokycius.

Po funkcijy iSskyrimo funkcijoms atrinkti taikomas NCA metodas, kad bty
galima nustatyti svarbias funkcijas, kurios reikSmingai prisideda prie to, kaip
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1. EEG Data Acquisition 2. Pre-Processing and sub-band decomposition
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6.13 pav. Sitlomo DoA stebésenos algoritmo blokiné schema

prognozuojama DoA indekso verte. Tada DoA indekso prognozei naudojami
atsitiktinio misko ir SVM regresijos modeliai, kuriy hiperparametrai tikslinami Bajeso
optimizavimo biidu. Veiksmingumo vertinimas apima vidutinés absoliutinés paklaidos
ir koreliacijos koeficiento apskaiCiavima, siekiant jvertinti, kiek tikslus ir patikimas yra
DoA indeksas, palyginti su pamatinémis vertémis.

Eksperimenty rezultatai ir aptarimas

Funkcijos atrankos procese visos 65-ios funkcijos, iSskirtos i$ $eSiy I duomeny
bazés subjekty, jvertinamos naudojant NCA, siekiant nustatyti svarbias DoA
stebésenos funkcijas. IS jy 34-ims funkcijoms buvo priskirti svoriai, virSijantys 0,5,
o tai rodo jy svarbg prognozuojant DoA. Tarp atrinkty svarbiy funkcijy yra tokios
funkcijos, kaip vidutinis galios daznis (MPF), vidutinis galios daZnis (MAPF) ir
mobilumas (MH) visose EEG pojuostése. Sios funkcijos, pavaizduotos 6.14 pav., buvo
laikomos labai svarbiomis dél jy atpaZinimo galios apibiidinant anestezijos buseng ir
prisidéjo prie tolesnés regresijos analizés. PaZymétina, kad, siekiant iSvengti tyrimo
SaliSkumo, j galuting regresija nebuvo jtraukti funkcijy atrankai naudoti jrasai.
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6.14 pav. NKI pasirinktos funkcijos (Zalios), suskirstytos j kategorijas pagal kiekvieng
pojuoste

Regresijos analizei buvo panaudoti 25198 ir 19399 penkiy sekundziy EEG
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signalo segmentai i§ I ir II duomeny baziy, atitinkamai atmetus segmentus su
neZinomomis DoA indekso vertémis.

6.15 pav. pateiktas etaloniniy DoA indekso verciy pavyzdys kartu su abiejy
modeliy jvertintomis vertémis, naudojant II duomeny baze. Stebéjimas atskleidZia,
kad atsitiktinio miSko modelis tiksliai atspindi etaloniniy DoA indekso verciy
trajektorijg. IS tiesy, atsitiktinio miSko modelis leido tiksliau jvertinti DoA indeksa
nei SVM ir parodé patikimesn¢ koreliacijg (0,86 ir 0,68).
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6.15 pav. Pavyzdys, kaip atsitiktinio misko (tamsiai mélyna) (a) ir SVM (violetiné) (b)
modeliai atkartoja vieno II duomeny bazés tiriamojo DoA indekso verciy tendencija
(Sviesiai pilka)

Diskusija

Cia buvo pasiiilytas naujas, parametry neturintis DoA stebésenos naudojant
vieng priekinj EEG kanalg funkcijy rinkinys, specialiai pritaikytas pragmatiniams
apribojimams, su kuriais susiduriama atliekant esamus tyrimus, spresti. Viena vertus,
daugybé literatuiroje pateikty metody buvo sukurti naudojant daugiakanalius EEG
jrasus. Tai gali sukelti nepatogumy operacijos metu, nes reikia keliy priedy, prijungty
prie jvairiy smegeny sri¢iy. PrieSingai, naudoti viena priekinj EEG kanalg yra
patogiau, nes ant beplaukés kaktos srities reikia uzdeéti tik vieng elektroda, o tai gali
sumazinti imluma triukSmui.

Kita vertus, tyrimuose, kuriuose daugiausia démesio buvo skiriama DoA
stebéjimui naudojant vieng priekinj EEG kanalg, paprastai buvo naudojama tik
viena duomeny bazé, skirta jy siilomy algoritmy veikimui sukurti ir jvertinti.
Neabejotina, kad jvairiose duomeny bazése pateikty algoritmy pakei¢iamumas,
esminis tikrojo pasaulio taikomyjy programy aspektas, literattiroje buvo sumenkintas.
Si problema ypaé isryskéja naudojant netiesines funkcijas, tokias kaip SampEn, nes
prieS skaiCiuojant reikia suderinti jy parametrus, t. y. tinkamas §iy priemoniy
veikimas yra jautrus pradiniam kalibravimui [221,228]. Vis délto ¢ia jdiegtam funkcijy
rinkiniui nereikia derinti parametry. D¢l to turéty biiti maZiau riipes¢iy dél parametry
veiksmingumo su kitomis duomeny bazémis, uZtikrinant, kad funkcijy rinkinys bty
pakeic¢iamas ir pritaikomas jvairiose duomeny bazése.
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6.6. ISVADOS

1. Siulomas SWT-kurtozés algoritmas veiksmingai paSalino elektriniy
poslinkiy tiesinés tendencijos artefaktus trumpame vieno EEG signalo segmente. Jis
pasirodé labai nasus, palyginti su AWICA ir EAWICA, su didesniu kroskoreliacijos
koeficientu — 0,92, palyginti su 0,58 ir 0,67, o NRMSE - atitinkamai 5,4, palyginti su
12,2 ir 11,5, tarp EEG signaly be artefakty ir filtruoto EEG. PanaSiai pasirodé¢, kad
VME-DWT yra veiksmingas algoritmas, leidZiantis aptikti ir filtruoti akiy mirkséjimo
artefaktus trumpame vieno frontalinio EEG kanalo segmente. Jis pralenké AVMD ir
DWT, turédamas didesnj 0,92 kroskoreliacijos koeficienta, palyginti su 0,83 ir 0,58, ir
mazesnj RRMSE - 0,42, palyginti su 0,59 ir 0,87. Abu algoritmai gali buti panaudoti
Salinant artefaktus smegeny ir kompiuterio sgsajose bei klinikinése programose, nes
jiems nereikia pradinio kalibravimo ar etaloniniy artefakty.

2. Netiesiniy poZymiy rinkinio, gauto i§ vieno frontalinio EEG kanalo,
efektyvumas ir universalumas buvo jrodytas kaip galimas sprendimas, leidZiantis
pasalinti jprastinés RBP analizés apribojimus, skirtus atskirti budrumui nuo
I miego stadijos. Netiesiniai poZymiai, pagristi EEG daZniniy komponenciy
fraktalinés ir entropijos analizés rezultatais, lenkia tradicing RBP analizg,
rodydami didesnj vidutinj jautruma I miego stadijai keliose duomeny bazése:
Miego telemetrija (82,6 % ir 71,8 %), DREAMS (87,6 % ir 71,8 %), DCSM
(91,0 % palyginti su 74,2 %) ir MESA (82,0 % ir 76,1 %).

3. Pateiktos naujos jZvalgos apie akiy mirkséjimo svarba EEG pagrijsto
vairuotojo nuovargio aptikimo metu, pabréZiant jy dvejopa, kaip informaciniy signaly
ir galimy artefakty, vaidmenj. Akiy mirkséjimo ir EEG RBP funkcijy sinergijos
palyginimas pries§ ir po filtravimo atskleidé pastebimg vidutinj vairuotojo nuovargio
nustatymo tikslumo pageréjima (71,2 %, palyginti su 78,1 %). Tai pabréZia
dviguba akiy mirkséjimo vaidmenj frontaliniame EEG signale nustatant vairuotojo
nuovargj.  Remiantis Siais duomenimis, buvo pasitlytas vairuotojo nuovargio
atpazinimo algoritmas, pagrjstas tuo paciu metu atlieckama EEG ir akiy mirkséjimo
analize naudojant Fpl EEG kanalg. Algoritmo veikimas buvo jvertintas naudojant
dvi skirtingy charakteristiky duomeny bazes. Rezultatai, gauti i§ abiejy duomeny
baziy naudojant AdaBoost klasifikatoriy, pagal tiksluma (88,4 % vs. 86, 8 %), parodé
siilomo algoritmo, skirto vairuotojo nuovargiui nustatyti, patikimumg. AtsiZvelgiant
j komerciniy vieno prefrontalinio kanalo EEG galvos juosty prieinamuma, Sis
algoritmas yra perspektyvus aptinkant vairuotojo nuovargj realiomis aplinkybémis.

4. Anestezijos lygiui stebéti buvo pasitlytas poZymiy rinkinys, nereikalaujantis
parametry derinimo skirtingoms duomeny bazéms. Vélgi, algoritmo jéjimo duomenys
yra vienas frontalinis EEG kanalas. Algoritmo veikimas buvo jvertintas dviejose
duomeny bazése, turinciose skirtingas charakteristikas. Siulomas funkcijy rinkinys
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pasirodé atsparus skirtingai duomeny baziy kilmei, pasiekdamas palyginamas 0,86 ir
0,85 kroskoreliacijos vertes ir 5,3 ir 7,1 vidutinés absoliutinés klaidos vertes tarp I
ir II duomeny baziy etaloniniy ir apskaiciuoty anestezijos gylio indekso verciy. Tai
pabréZia netiesiniy poZymiy parametry optimizavimo svarbg, siekiant maksimaliai
padidinti EEG pagrjsto anestezijos gylio stebéjimo patikimuma.
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